[SDOI2016]排列计数

题目描述

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7109+7 取模。

输入输出格式

输入格式:

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

输出格式:

输出 T 行,每行一个数,表示求出的序列数

输入输出样例

输入样例#1:

5

1 0

1 1

5 2

100 50

10000 5000

输出样例#1:

0

1

20

578028887

60695423

说明

测试点 1 ~ 3: \(T = 1000,n \leq 8,m \leq 8;\)

测试点 4 ~ 6: \(T = 1000,n \leq 12,m \leq 12;\)

测试点 7 ~ 9: \(T = 1000,n \leq 100,m \leq 100;\)

测试点 10 ~ 12:\(T = 1000,n \leq 1000,m \leq 1000;\)

测试点 13 ~ 14:\(T = 500000,n \leq 1000,m \leq 1000;\)

测试点 15 ~ 20:\(T = 500000,n \leq 1000000,m \leq 1000000。\)

Solution

错排公式/组合计数 裸题

\(Ans=C_{n}^{m}\times D_{n-m}\),其中\(D_{i}\)为共i个元素的错排方案数(错排指元素i不在下标为i的位置上)

然后因为要取模,费马小定理求一下逆元

在这里摆一下组合及错排的公式

\[C_{n}^{m}=\frac{n!}{m!\times{(n-m)!}}
\]

\[D_{n}=(n-1)\times(D_{n-1}+D_{n-2})
\]

其实错排还有一个通项公式,但是由于时间复杂度太高,所以预处理不太常用,但在这里还是摆一下

\[D_{n}=n!(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+...+(-1)^n\frac{1}{n!})
\]

Code

#include<bits/stdc++.h>
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define rg register
#define il inline
#define lol long long using namespace std; const int N=1e6+10,mod=1e9+7; void in(int &ans) {
ans=0; int f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
ans*=f;
} int T,n,m;
lol D[N],ie[N],sum[N];//ie[]是逆元数组,inverse element的简称 lol qpow(lol a,int x,lol ans=1) {
while(x) {
if(x&1) ans=ans*a%mod;
x>>=1,a=a*a%mod;
}return ans;
} il void init() {
D[0]=D[2]=1; for(rg int i=3;i<=N;i++) D[i]=(i-1)*(D[i-1]+D[i-2])%mod;
ie[0]=sum[0]=1; for(rg int i=1;i<=N;i++) sum[i]=sum[i-1]*i%mod,ie[i]=qpow(sum[i],mod-2);
} int main()
{
in(T); init();
while(T--) {
in(n),in(m);
printf("%lld\n",D[n-m]*sum[n]%mod*ie[m]%mod*ie[n-m]%mod);
}
return 0;
}

博主蒟蒻,随意转载.但必须附上原文链接

http://www.cnblogs.com/real-l/

[SDOI2016] 排列计数 (组合数学)的更多相关文章

  1. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  2. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  3. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

  6. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  7. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  8. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  9. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

随机推荐

  1. C语言数据结构(二)

    算法和算法的衡量 一.算法 算法是为了解决某类问题而规定的一个有限长的操作序列.一个算法必须满足以下五个重要特性: 1.有穷性   对于任意一组合法输入值,在执行又穷步骤之后一定能结束,即:算法中的每 ...

  2. TopCoder SRM 489 Div1 Lev3:AppleTree

    挺优秀的一道题,想出做法时有些惊艳. 题意: 数轴上有\(D\)个连续整数刻度,有\(N\)棵树要种在这些刻度上,其中第\(i\)棵与两旁(如果有的话)相邻的树至少要相距\(R_i\),问方法数. \ ...

  3. Plsql developer 怎么在打开时登陆配置oracel client?

    配置前 logon 这块是空白的,该怎么配置呢? 看下面 --> 安装完plsql 后 需要安装 oracle client, 这里不再赘述,请自行百度.下面将贴出如何使用 oracle cli ...

  4. 对mysqlbinlog日志进行操作的总结包括 启用,过期自动删除

    操作命令: show binlog events in 'binlog.000016' limit 10; reset master 删除所有的二进制日志 flush logs  产生一个新的binl ...

  5. 步骤:asp.net core中使用identifyserver4颁发令牌

    使用IdentityServer4颁发令牌基本步骤如下: 在 Startup.Configure 方法调用 app.UseIdentityServer ,添加IdentityServer4到应用的 H ...

  6. nvm版本管理工具安装

    windows 安装nvm步骤(shi'yongnvm-windows管理node版本): 瞎几把前言:mac上可以用n来管理node版本,私以为n很好用.家里的win7台式机一直没有安装过任何管理工 ...

  7. Go基础篇【第8篇】: 内置库模块 bytes [二]

    type Reader ¶ type Reader struct { // 内含隐藏或非导出字段 } Reader类型通过从一个[]byte读取数据,实现了io.Reader.io.Seeker.io ...

  8. BZOJ 2756 SCOI2012 奇怪的游戏 最大流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2756 Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N ...

  9. VirtualBox上安装ubuntu

    当安装完成,重启后,在启动界面出现Please remove the installation medium,then press ENTER.问题? 解决方法:在VirtualBox里面通过iso文 ...

  10. SSH 项目中 使用websocket 实现网页聊天功能

    参考文章  :java使用websocket,并且获取HttpSession,源码分析    http://www.cnblogs.com/zhuxiaojie/p/6238826.html 1.在项 ...