[SDOI2016]排列计数

题目描述

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7109+7 取模。

输入输出格式

输入格式:

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

输出格式:

输出 T 行,每行一个数,表示求出的序列数

输入输出样例

输入样例#1:

5

1 0

1 1

5 2

100 50

10000 5000

输出样例#1:

0

1

20

578028887

60695423

说明

测试点 1 ~ 3: \(T = 1000,n \leq 8,m \leq 8;\)

测试点 4 ~ 6: \(T = 1000,n \leq 12,m \leq 12;\)

测试点 7 ~ 9: \(T = 1000,n \leq 100,m \leq 100;\)

测试点 10 ~ 12:\(T = 1000,n \leq 1000,m \leq 1000;\)

测试点 13 ~ 14:\(T = 500000,n \leq 1000,m \leq 1000;\)

测试点 15 ~ 20:\(T = 500000,n \leq 1000000,m \leq 1000000。\)

Solution

错排公式/组合计数 裸题

\(Ans=C_{n}^{m}\times D_{n-m}\),其中\(D_{i}\)为共i个元素的错排方案数(错排指元素i不在下标为i的位置上)

然后因为要取模,费马小定理求一下逆元

在这里摆一下组合及错排的公式

\[C_{n}^{m}=\frac{n!}{m!\times{(n-m)!}}
\]

\[D_{n}=(n-1)\times(D_{n-1}+D_{n-2})
\]

其实错排还有一个通项公式,但是由于时间复杂度太高,所以预处理不太常用,但在这里还是摆一下

\[D_{n}=n!(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+...+(-1)^n\frac{1}{n!})
\]

Code

#include<bits/stdc++.h>
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define rg register
#define il inline
#define lol long long using namespace std; const int N=1e6+10,mod=1e9+7; void in(int &ans) {
ans=0; int f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
ans*=f;
} int T,n,m;
lol D[N],ie[N],sum[N];//ie[]是逆元数组,inverse element的简称 lol qpow(lol a,int x,lol ans=1) {
while(x) {
if(x&1) ans=ans*a%mod;
x>>=1,a=a*a%mod;
}return ans;
} il void init() {
D[0]=D[2]=1; for(rg int i=3;i<=N;i++) D[i]=(i-1)*(D[i-1]+D[i-2])%mod;
ie[0]=sum[0]=1; for(rg int i=1;i<=N;i++) sum[i]=sum[i-1]*i%mod,ie[i]=qpow(sum[i],mod-2);
} int main()
{
in(T); init();
while(T--) {
in(n),in(m);
printf("%lld\n",D[n-m]*sum[n]%mod*ie[m]%mod*ie[n-m]%mod);
}
return 0;
}

博主蒟蒻,随意转载.但必须附上原文链接

http://www.cnblogs.com/real-l/

[SDOI2016] 排列计数 (组合数学)的更多相关文章

  1. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  2. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  3. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

  6. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  7. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  8. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  9. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

随机推荐

  1. python七类之字典详解

    一.字典 一.关键字:dict 1.字典是唯一的键值对数据,其表现形式:   dic  =  {键:值},​字典里的键必须保证是唯一的 2.键必须是不可变的数据类型: ​a.故列表是不能当键的 b.所 ...

  2. (数据科学学习手札15)DBSCAN密度聚类法原理简介&Python与R的实现

    DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: ht ...

  3. java 上溯造型与下塑造型

    父类: package com.neusoft.chapter07; public class Father { public int i = 1; public void say(){ System ...

  4. git初始化仓库相关

    当我们需要新建一个git项目会遇到的问题 全局设置 git config --global user.name "名字" git config --global user.emai ...

  5. WPF中使用定时器的注意事项

    原文:WPF中使用定时器的注意事项 注意事项 要使用System.Windows.Threading.DispatcherTimer,而不能使用System.Timers.Timer. 原因是WPF是 ...

  6. 【转】moodle中年级、班级、小组研讨

    Moodle平台支持年级.班级.小组功能,提供了方便易用的分组工具.小组支持公开和封闭属性,配合教学功能模块,教师可以组织小组为单位的教学活动. 在Moodle中,年级.班级.小组主要是通过群组(co ...

  7. Java:Random函数及其种子的作用

    伪随机(preundorandom):通过算法产生的随机数都是伪随机!! 只有通过真实的随机事件产生的随机数才是真随机!!比如,通过机器的硬件噪声产生随机数.通过大气噪声产生随机数 Random生成的 ...

  8. es6中类的注意事项

    class Circle { constructor(radius) { this.radius = radius; Circle.circlesMade++; }; static draw(circ ...

  9. [转]Git,SVN的优缺点及适合的范围,开源项目?公司项目?

    使用git不久,粗浅理解: 1)适用对象不同.Git适用于参与开源项目的开发者.他们由于水平高,更在乎的是效率而不是易用性.Svn则不同,它适合普通的公司开发团队.使用起来更加容易. 2)使用的场合不 ...

  10. Spotlight on MySQL

    聚光灯在MySQL 1.Sessios会话Total Users:总用户数前连接到MySQL服务器的用户会话总数Active Users:活跃用户此控件表示连接到当前正在执行SQL语句或其他数据库请求 ...