Problem A

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 463    Accepted Submission(s): 162

Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:
H(s) = ∏i = 1i<=len(s)(S- 28)(mod 9973)
Si代表 S[i] 字符的 ASCII 码。

请帮助度熊计算大字符串中任意一段的哈希值是多少。

 
Input
多组测试数据,每组测试数据第一行是一个正整数N,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来N行,每行包含两个正整数ab,代表询问的起始位置以及终止位置。
1 <= N <= 1,000
1 <= len(string) <= 100,000
1 <= a,b <= len(string)
Output
对于每一个询问,输出一个整数值,代表大字符串从 位到 位的子串的哈希值。
 
Sample Input
2
ACMlove2015
1 11
8 10
1
testMessage
1 1
 
Sample Output
6891
9240
88
 
Source
 
 
 
解析:快速幂+逆元。先求出字符串每个位置的哈希值,则结果为H(b)/H(a-1)。此处需要逆元的知识:因为p为素数,根据费马小定理,则H(n)的逆元为H(n)MOD-2 % MOD。最终结果为(H(b)*H(a-1)MOD-2 % MOD)%MOD。
#include <iostream>
#include <cstdio>
#include "cstring"
#include "algorithm"
#include "map"
#include "string"
using namespace std;
#define LL long long
#define N 100010
#define MOD 9973char s[N];
int f[N];
int len;
LL quick_pow(LL a,LL b,LL mod)
{
LL ans=;
while(b>){
if(b&){
ans=ans*a%mod;
}
a=a*a%mod;
b>>=;
}
return ans;
} int main()
{
int n,l,r,sum;
while(~scanf("%d",&n)){
scanf("%s",s+);
len=strlen(s+);
f[]=;
for(int i=;i<=len;i++)
{
f[i]=f[i-]*(s[i]-)%;
}
while(n--)
{
scanf("%d%d",&l,&r);
printf("%lld\n",f[r]*quick_pow(f[l-],MOD-,MOD)%MOD);
}
}
return ;
}

    1.像这样求连乘的,一段区间的东西,一定要先打表,之后在输入查询,否则几乎绝对超时,比如求这题可以换成H(t)/H(s-1),由此可以想到,连加的时候也可以打表,那就是H(t)-H(s-1)

  2.看到大数相除,还取模,那就是逆元了,可以用 exgcd 或 费马小定理求,这里可以写个函数自己判断下m是不是素数,9973 显然是素数,所以就费马小定理。费马小定理,H(n)的逆元为H(n)MOD-2 % MOD,当MOD是素数时。

~~科普级别

HDU 5685 Problem A | 快速幂+逆元的更多相关文章

  1. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  2. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  3. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  4. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  5. HDU - 5685 Problem A(逆元)

    这题我第一次想的就是直接模拟,因为我是这样感觉的,输入n是3次方,长度是5次方,加起来才8次方,里面的操作又不复杂,感觉应该能过,然而不如我所料,TLE了,玛德,这是第一次的代码. #include ...

  6. HDU 1757 A Simple Math Problem (矩阵快速幂)

    题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...

  7. HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元

    题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...

  8. HDU 6395 分段矩阵快速幂 HDU 6386 建虚点+dij

    http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Me ...

  9. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. ORB-SLAM 代码笔记(三)tracking原理

    ORB视觉里程计主体在tracking线程中

  2. Cadence17.2下载ALTERA的FPGA封装库

    1. 在Cadence的安装目录里面找了下,发现都没有Altera的FPGA型号的函数库,下面的虽然是ALTERA,但是没有FPGA的器件封装 2. 去intel的官网看能不能下载到,INTEL网址, ...

  3. svn资源库url问题

    今天连接svn资源库的时候一直出现 RA layer request failedsvn: Unable to connect to a repository at URL http://... sv ...

  4. Linux-Shell脚本编程-学习-5-Shell编程-使用结构化命令-if-then-else-elif

    if-then语句 if-then语句格式如下 if comman then command fi bash shell中的if语句可鞥会和我们接触的其他if语句的工作方式不同,bash shell的 ...

  5. CSP201509-1:数组分段

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的“计算机职业资格认证”考试,针对计算机软件开发. ...

  6. C - 红与黑

    C - 红与黑 Time Limit: 1000/1000MS (C++/Others) Memory Limit: 65536/65536KB (C++/Others) Problem Descri ...

  7. awk,rsync,重启,maxdepth一层目录,登录,开机自启动

    有100个日志文件,每个文件大约1G,每条日志都以 “H:i:s” 的时间格式开头,如: 05:02:04 xxx yyy zzz 因为是日志文件,所以肯定以时间为顺序的,现在可以确定的是,在某个文件 ...

  8. Java中动态代理实现原理深究

    一.前言 笔者平时开发使用“动态代理”不多,最近在看设计模式的时候,“动态代理”又在面前晃了几次,所以这次想从源码的角度去分析动态代理的实现原理,以窥探其精妙~ 二.正文 2.1 静态代理  本文源码 ...

  9. 日期时间选择器datetimepicker.js

    在做项目中,往往会遇到需要用户输入2014-07-19 09:55:53这样的格式的数据.就是典型的年月日时分秒这样的格式.这个时候,使用datetimepicker会比较简单. DateTimePi ...

  10. 【电影影评】梦之安魂曲-败给了BGM和豆瓣影评

    首先,这部电影豆瓣8.7分,一般来说,豆瓣的打分是比较准确的.能反映一个片子的质量,而较少受到环境的影响.但是这种关系当然也不全对,比如某些片子可能特别让某一种人喜欢(如退役军人和军旅题材),而在某些 ...