1.载入一个带有有趣纹理的图像,使用cvSmooth()函数以多种方法平滑图像,参数为smoothtype = CV_GAUSSIAN.

a.使用对称的平滑的平滑窗口,大小依次是3x3,5x5,9x9,11x11,并显示结果。

b.用5x5高斯滤净器平滑图像两次和用两次11x11平滑器平滑一次的输出结果是最接近相同吗?为什么?

#include <cv.h>
#include <highgui.h>
int main()
{
IplImage *img = cvLoadImage("3.jpg", );
cvNamedWindow("原图", );
cvShowImage("原图", img);
IplImage *three = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *five = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *double_five = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *nine = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *eleven = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *double_eleven = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels); cvSmooth(img, three, CV_GAUSSIAN, , );
cvSmooth(img, five, CV_GAUSSIAN, , );
cvSmooth(img, nine, CV_GAUSSIAN, , );
cvSmooth(img, eleven, CV_GAUSSIAN, , );
cvSmooth(five, double_five, CV_GAUSSIAN, , );
cvSmooth(eleven, double_eleven, CV_GAUSSIAN, , );
cvNamedWindow("three", );
cvNamedWindow("five", );
cvNamedWindow("nine", );
cvNamedWindow("eleven", );
cvNamedWindow("double_five", );
cvNamedWindow("double_eleven", );
cvShowImage("three", three);
cvShowImage("five", five);
cvShowImage("nine", nine);
cvShowImage("eleven", eleven);
cvShowImage("double_five", double_five);
cvShowImage("double_eleven", double_eleven);
cvWaitKey();
cvReleaseImage(&img);
cvReleaseImage(&three);
cvReleaseImage(&five);
cvReleaseImage(&double_five);
cvReleaseImage(&nine);
cvReleaseImage(&eleven);
cvReleaseImage(&double_eleven);
cvDestroyAllWindows();
return ;
}

2.

#include <cv.h>
#include <highgui.h>
int main()
{
IplImage *img = cvCreateImage(cvSize(, ), IPL_DEPTH_8U, );
IplImage *five = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
IplImage *nine = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
cvZero(img);
cvNamedWindow("main1", );
cvShowImage("main1", img);
for (int i = ; i <= ; i++)
{
uchar *ptr = (uchar*)(img->imageData + i*img->widthStep);
for (int j = ; j <= ; j++)
{
ptr[j] = 0xff;
}
}
cvNamedWindow("main", );
cvShowImage("main", img); cvSmooth(img, five, CV_GAUSSIAN,,);
cvSmooth(five, five, CV_GAUSSIAN, , ); cvNamedWindow("five", );
cvShowImage("five", five); cvSmooth(five, nine, CV_GAUSSIAN, , );
cvNamedWindow("nine", );
cvShowImage("nine", nine);
cvWaitKey(); cvReleaseImage(&img);
cvReleaseImage(&five);
cvReleaseImage(&nine);
cvDestroyAllWindows();
return ;
}

4.

#include <cv.h>
#include <highgui.h>
int main()
{
IplImage *img1 = cvLoadImage("111.jpg", );
IplImage *img2 = cvLoadImage("112.jpg", );
IplImage *img3 = cvCreateImage(cvSize(img1->width, img1->height), img1->depth, img1->nChannels);
IplImage *img4 = cvCreateImage(cvSize(img1->width, img1->height), img1->depth, img1->nChannels);
IplImage *img5 = cvCreateImage(cvSize(img1->width, img1->height), img1->depth, img1->nChannels);
cvSub(img1, img2,img3,NULL);//img1 - img2
cvAbs(img3, img3); // img3 的绝对值 cvDilate(img3, img4, NULL, ); //膨胀处理
cvErode(img4, img5, NULL, ); //腐蚀操作
cvNamedWindow("111.jpg", );
cvNamedWindow("112.jpg", );
cvNamedWindow("img3", );
cvNamedWindow("img4", );
cvNamedWindow("img5", );
cvShowImage("111.jpg", img1);
cvShowImage("112.jpg", img2);
cvShowImage("img3", img3);
cvShowImage("img4", img4);
cvShowImage("img5", img5);
cvWaitKey();
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img3);
cvReleaseImage(&img4);
cvReleaseImage(&img5);
cvDestroyAllWindows();
return ;
}

5

#include <cv.h>
#include <highgui.h>
int main()
{
IplImage *img1 = cvLoadImage("100.jpg", CV_LOAD_IMAGE_GRAYSCALE);
IplImage *img2 = cvLoadImage("101.jpg", CV_LOAD_IMAGE_GRAYSCALE);
IplImage *img3 = cvCreateImage(cvGetSize(img1), img1->depth, img1->nChannels);
IplImage *img4 = cvCreateImage(cvGetSize(img1), img1->depth, img1->nChannels);
IplImage *img5 = cvCreateImage(cvGetSize(img1), img1->depth, img1->nChannels);
cvSub(img1, img2, img3, NULL);//img1 - img2 = img3
cvAbs(img3, img3); //img3 的绝对值
cvThreshold(img3, img4, , , CV_THRESH_BINARY_INV); //对img3进行二进制阀值操作
IplConvKernel *element = cvCreateStructuringElementEx(, , , , CV_SHAPE_RECT, NULL);//自定义核
cvMorphologyEx(img4, img5, NULL, element, CV_MOP_OPEN, );//进行开运算
cvReleaseStructuringElement(&element); //释放核
cvNamedWindow("img1", );
cvNamedWindow("img2", );
cvNamedWindow("img3", );
cvNamedWindow("img4", );
cvNamedWindow("img5", );
cvShowImage("img1", img1);
cvShowImage("img2", img2);
cvShowImage("img3", img3);
cvShowImage("img4", img4);
cvShowImage("img5", img5);
cvWaitKey();
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img3);
cvReleaseImage(&img4);
cvReleaseImage(&img5);
cvDestroyAllWindows();
return ;
}

opencv第四章的更多相关文章

  1. 《学习OpenCV》练习题第四章第八题ab

    这道题是利用OpenCV例子程序里自带的人脸检测程序,做点图像的复制操作以及alpha融合. 说明:人脸检测的程序我参照了网上现有的例子程序,没有用我用的OpenCV版本(2.4.5)的facedet ...

  2. 《学习OpenCV》练习题第四章第三题b

    #include <highgui.h> #include <cv.h> #include "opencv_libs.h" /* *<学习OpenCV ...

  3. 《学习OpenCV》练习题第四章第三题a

    #include <highgui.h> #include <cv.h> #include "opencv_libs.h" #pragma comment ...

  4. 《学习OpenCV》练习题第四章第二题

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  5. 《学习OpenCV》练习题第四章第一题b&c

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  6. 《学习OpenCV》练习题第四章第一题a

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  7. 《学习OpenCV》练习题第四章第七题abc

    题外话:一直是打算把这本书的全部课后编程题写完的,中间断了几个月,一直忙于其他事.现在开始补上. 这道题我不清楚我理解的题意是不是正确的,这道题可以练习用OpenCV实现透视变换(可以用于矫正在3维环 ...

  8. 《Django By Example》第四章 中文 翻译 (个人学习,渣翻)

    书籍出处:https://www.packtpub.com/web-development/django-example 原作者:Antonio Melé (译者注:祝大家新年快乐,这次带来<D ...

  9. 《Linux内核设计与实现》读书笔记 第四章 进程调度

    第四章进程调度 进程调度程序可看做在可运行太进程之间分配有限的处理器时间资源的内核子系统.调度程序是多任务操作系统的基础.通过调度程序的合理调度,系统资源才能最大限度地发挥作用,多进程才会有并发执行的 ...

随机推荐

  1. JavaSE复习(七)Stream流和方法引用

    Stream流 全新的Stream概念,用于解决已有集合类库既有的弊端. 传统集合的多步遍历代码 几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作.而当我们 ...

  2. Spring MVC前台POST/GET方式传参数的方法

    假设前台通过submit传值,代码如下: <form action="testPost.do" method="post"> 页码:<inpu ...

  3. JavaScript中注册时间处理程序的方式

    基本的方式有两种: 一.第一种方式,出现在Web初期,给时间目标对象或文档元素设置属性. 1.设置JavaScript对象属性为事件处理程序. 示例: 缺点,这种设计都是围绕着假设每个事件目标对于每种 ...

  4. 搭建Hadoop环境(二)

    摘要:近来又用到了Linux系统,所以就又新装了一个虚拟机和CentOS 6.4来用,搞开发的程序猿们可能都知道,在现在的很多企业中,生产环境大多都是Linux服务器,并且用的比较多的大都是CentO ...

  5. 深入研究java.lang.Runtime类(转)

    一.概述      Runtime类封装了运行时的环境.每个 Java 应用程序都有一个 Runtime 类实例,使应用程序能够与其运行的环境相连接.      一般不能实例化一个Runtime对象, ...

  6. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  7. BZOJ4446 SCOI2015小凸玩密室(树形dp)

    设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn ...

  8. [BZOJ3196][Tyvj1730]二逼平衡树

    [BZOJ3196][Tyvj1730]二逼平衡树 试题描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询 \(k\) 在区间内的排名 查询区间内排名为 \ ...

  9. [NOI.AC省选模拟赛3.23] 集合 [数学]

    题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...

  10. ListView获取网络数据并展示优化练习

    权限: <uses-permission android:name="android.permission.INTERNET"></uses-permission ...