[洛谷P4238]【模板】多项式求逆
题目大意:多项式求逆
题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \dfrac{n}{2} \rceil}$下的逆元)
卡点:无
C++ Code:
#include <cstdio>
#define int long long
#define maxn 262144
using namespace std;
const int mod = 998244353;
const int P = 3, invP = (mod + 1) / P;
int n, l, dig;
int a[maxn], b[maxn], tmp[maxn], rev[maxn];
int pw(int base, int p) {
int ans = 1;
for (p <<= 1; p >>= 1; base = (base * base) % mod) if (p & 1) ans = (ans * base) % mod;
return ans;
}
int inv(int x) {
return pw(x, mod - 2);
}
void swap(int &a, int &b) {a ^= b ^= a ^= b;}
void NTT(int *a, int op) {
int Yx;
if (op == 1) Yx = P; else Yx = invP;
for (int i = 0; i < l; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int mid = 1; mid < l; mid <<= 1) {
int Wn = pw(Yx, (mod - 1) / (mid << 1));
for (int i = 0; i < l; i += mid << 1) {
int W = 1;
for (int j = 0; j < mid; j++, W = W * Wn % mod) {
int X = a[i + j], Y = W * a[i + j + mid] % mod;
a[i + j] = (X + Y) % mod;
a[i + j + mid] = (X - Y + mod) % mod;
}
}
}
if (op == -1) {
int invl = inv(l);
for (int i = 0; i < l; i++) a[i] = a[i] * invl % mod;
}
}
void INV(int *a, int *b, int n) {
if (n == 1) {b[0] = inv(a[0]); return ;}
INV(a, b, n + 1 >> 1);
l = 1; dig = 0; while (l < n << 1) l <<= 1, dig++;
rev[0] = 0; for (int i = 1; i < l; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (dig - 1));
for (int i = 0; i < n; i++) tmp[i] = a[i];
for (int i = n; i < l; i++) tmp[i] = 0;
NTT(b, 1); NTT(tmp, 1);
for (int i = 0; i < l; i++)
b[i] = (2 - tmp[i] * b[i] % mod + mod) % mod * b[i] % mod;
NTT(b, -1);
for (int i = n; i < l; i++) b[i] = 0;
}
signed main() {
scanf("%lld", &n);
for (int i = 0; i < n; i++) scanf("%lld", &a[i]), a[i] %= mod;
INV(a, b, n);
for (int i = 0; i < n; i++) printf("%lld ", b[i]);
return 0;
}
[洛谷P4238]【模板】多项式求逆的更多相关文章
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 【洛谷4238】 多项式求逆(NTT,分治)
前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
随机推荐
- JDK9 新特性
JDK9 新特性目录导航 目录结构 模块化系统 jshell 多版本兼容JAR 接口的私有方法 改进try-with-resourcs 改进砖石操作符 限制使用单独下划线标识符 String存储结构变 ...
- ctf题目writeup(9)
继续刷题,找到一个 什么 蓝鲸安全的ctf平台 地址:http://whalectf.xin/challenges (话说这些ctf平台长得好像) 1. 放到converter试一下: 在用十六进制转 ...
- 文件 I/O字节流
输入字节流: import java.io.*; public class test_main { public static void main(String[] args) { int n=-1; ...
- (数据科学学习手册28)SQL server 2012中的查询语句汇总
一.简介 数据库管理系统(DBMS)最重要的功能就是提供数据查询,即用户根据实际需求对数据进行筛选,并以特定形式进行显示.在Microsoft SQL Serve 2012 中,可以使用通用的SELE ...
- UVa Problem 100 The 3n+1 problem (3n+1 问题)
参考:https://blog.csdn.net/metaphysis/article/details/6431937 #include <iostream> #include <c ...
- 隐藏WPF ToolBar 左侧的移动虚线和右侧的小箭头
原文:隐藏WPF ToolBar 左侧的移动虚线和右侧的小箭头 上面的图是两个工具栏的链接处. 去除蓝色部分的方法是 设置工具栏的ToolBarTray.IsLocked附加选项为True ...
- OpenCV代码提取:transpose函数的实现
OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...
- P1107 最大整数
P1107 最大整数 题目描述 设有n个正整数 (n<=20), 将它们连接成一排, 组成一个最大的多位整数. 例如: n=3时, 3个整数13, 312, 343连接成的最大整数为: 3433 ...
- 『JavaScript』核心
弱类型语言 JavaScript是一种弱类型的语言.变量可以根据所赋的值改变类型.原始类型之间也可以进行类型转换.其弱类型的物质为其带来了极大的灵活性. 注意:原始类型使用值传递,复合类型使用引用传递 ...
- VS2010使用NuGet程序包管理器
使用C#过程中经常需要使用一些扩展包,例如sqlite,json解析等. VS2010自带了一个扩展管理器,里面可以下载到AStyle,Visual Assit等有用的插件. VS2010中点击[工具 ...