题目大意:多项式求逆

题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \dfrac{n}{2} \rceil}$下的逆元)

卡点:

C++ Code:

#include <cstdio>
#define int long long
#define maxn 262144
using namespace std;
const int mod = 998244353;
const int P = 3, invP = (mod + 1) / P;
int n, l, dig;
int a[maxn], b[maxn], tmp[maxn], rev[maxn];
int pw(int base, int p) {
int ans = 1;
for (p <<= 1; p >>= 1; base = (base * base) % mod) if (p & 1) ans = (ans * base) % mod;
return ans;
}
int inv(int x) {
return pw(x, mod - 2);
}
void swap(int &a, int &b) {a ^= b ^= a ^= b;}
void NTT(int *a, int op) {
int Yx;
if (op == 1) Yx = P; else Yx = invP;
for (int i = 0; i < l; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int mid = 1; mid < l; mid <<= 1) {
int Wn = pw(Yx, (mod - 1) / (mid << 1));
for (int i = 0; i < l; i += mid << 1) {
int W = 1;
for (int j = 0; j < mid; j++, W = W * Wn % mod) {
int X = a[i + j], Y = W * a[i + j + mid] % mod;
a[i + j] = (X + Y) % mod;
a[i + j + mid] = (X - Y + mod) % mod;
}
}
}
if (op == -1) {
int invl = inv(l);
for (int i = 0; i < l; i++) a[i] = a[i] * invl % mod;
}
}
void INV(int *a, int *b, int n) {
if (n == 1) {b[0] = inv(a[0]); return ;}
INV(a, b, n + 1 >> 1);
l = 1; dig = 0; while (l < n << 1) l <<= 1, dig++;
rev[0] = 0; for (int i = 1; i < l; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (dig - 1));
for (int i = 0; i < n; i++) tmp[i] = a[i];
for (int i = n; i < l; i++) tmp[i] = 0;
NTT(b, 1); NTT(tmp, 1);
for (int i = 0; i < l; i++)
b[i] = (2 - tmp[i] * b[i] % mod + mod) % mod * b[i] % mod;
NTT(b, -1);
for (int i = n; i < l; i++) b[i] = 0;
}
signed main() {
scanf("%lld", &n);
for (int i = 0; i < n; i++) scanf("%lld", &a[i]), a[i] %= mod;
INV(a, b, n);
for (int i = 0; i < n; i++) printf("%lld ", b[i]);
return 0;
}

  

[洛谷P4238]【模板】多项式求逆的更多相关文章

  1. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  2. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  3. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  4. 【洛谷4238】 多项式求逆(NTT,分治)

    前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h ...

  5. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  6. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  7. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  8. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  9. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

  10. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

随机推荐

  1. virtual box 故障修复

    vmware ,virtual box等虚拟化环境为一台系统同时允许运行多台系统成为可能准备了技术支持. 通过软件化的平台虚构出硬件设备的驱动,可谓虚拟化技术应用非常广泛. 在平常的虚拟机启动过程中经 ...

  2. Array-快餐管饱

    一.如何获得一个数组? rsp: 1. []  2.new Array() 3.str.split() ps:new Array()可以不加括号,其传一个参数代表数组长度,两个及以上就是初始化数组. ...

  3. Asp.net 自定义CustomerSession 存放到Redis中

    首先,引用 Redis 操作驱动组件:StackExchange.Redis.dll. 继承SessionStateStoreProviderBase 类, 实现方法: using System; u ...

  4. Laravel系列之CMS系统学习 — 角色、权限配置【2】

    一.RBAC分析 基于角色的权限访问控制(Role-Based Access Control),这里存在这么几个玩意儿:角色.权限,用户 表:roles.permissions.role_has_pe ...

  5. hive 从Excel中导入数据

    拿到Excel表后将数据保留,其他的乱七八糟都删掉,然后另存为txt格式的文本,用nodepad++将文本转换为UTF-8编码,此处命名为cityprovince.txt 将cityprovince. ...

  6. 学会了 python 的pip方法安装第三方库

    超级开心啊!!!!!!!!!!!!! win10 打开cmd Installing with get-pip.py To install pip, securely download get-pip. ...

  7. 3 python3 编码解码问题 upd接受数据

    1.python3下的中文乱码:send_data.encode("utf-8") from socket import * udp_socket = socket(AF_INET ...

  8. Flask 中文手册 0.10 文档

    Flask 中文手册 0.10 文档 欢迎使用 Flask 欢迎阅读 Flask 文档. 本文档分为几个部分.我推荐您先从 安装 开始,之后再浏览 快速入门 章节. 教程 比快速入门更详细地介绍了如何 ...

  9. OpenCV入门:(七:OpenCV取随机数以及显示文字)

    1.随机颜色 OpenCV中自带了取随机数的方法,使用步骤: RNG rng( 0xFFFFFFFF ); 随机数 = rng.uniform( 下限,上限 ); 2.显示文字 , , bool bo ...

  10. Python全栈 MongoDB 数据库(数据的修改)

    修改操作符的使用   $set 修改一个域的值,增加一个域   阿哲年龄修改为33 db.class1.update({name:'阿哲'},{$set:{age:33}})   如果sex域不存在则 ...