Minimum Modular
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You have been given n distinct integers a1, a2, ..., an. You can remove at most k of them. Find the minimum modular m (m > 0), so that for every pair of the remaining integers(ai, aj), the following unequality holds: .

Input

The first line contains two integers n and k (1  ≤ n  ≤ 5000, 0 ≤ k ≤ 4), which we have mentioned above.

The second line contains n distinct integers a1, a2, ..., an (0 ≤ ai ≤ 106).

Output

Print a single positive integer — the minimum m.

Sample test(s)
input
7 0
0 2 3 6 7 12 18
output
13
input
7 1
0 2 3 6 7 12 18
output
7

参考:http://www.cnblogs.com/Lyush/archive/2013/05/14/3077258.html

题目大意:给你n个数,你可以从中删除最多k个数,使得剩余的所有数对m取余没有同余的,求最小的m。

解题思路:首先想到暴力,从小到大枚举m,然后判断n个数中对m取模同余个数有多少,如果超出k就枚举更大的m。然而这样的话,时间复杂度为O(n*1e6)。然后在网上找了博客看,但是有些地方当时自己感觉很不好理解的,这里做下自己的解释。1.首先这里用了一个剪枝,这个剪枝能节省大量时间。因为如果有k+1个数都是对m取模同余,那么只需删除k个数,就可以让剩下的数(只剩下一个数)不同余,那么从k+1个同余的数中取出2个数组成同余对的组合数就有C(2,k+1)种,即k*k+1/2种,那么如果对m取模同余的同余对的组合数大于k*k+1/2种,说明无法删除k个数使得剩下的数不同余。2.然后暴力判断此时满足1步骤的m作为模是否能满足同余的数小于k个。

#include<bits/stdc++.h>
using namespace std;
#define max(a,b) (a)>(b)?(a):(b)
const int maxn=1e6+100;
int num[maxn];
int a[5500];
bool flag[maxn];
int dif(int a,int b){
return a>b? a-b:b-a;
}
int main(){
int n,k,i,j,maxa,m,mark,sum,cn,mod;
maxa=-1;
while(scanf("%d%d",&n,&k)!=EOF){
memset(num,0,sizeof(num));
for(i=0;i<n;i++){
scanf("%d",&a[i]);
maxa=max(a[i],maxa);
}
//首先应知道a%m==b%m --> |a-b|%m==0
for(i=1;i<n;i++){
for(j=0;j<i;j++){
//不同类型的同余对各有多少
num[dif(a[i],a[j])]++;
}
}
for(m=1;m<=maxa;m++){
sum=0;
for(i=m;i<=maxa;i+=m){
//这里i+=m的原因是,这样能保证同余对 对于对之间也都是同余的,即这样挑出的组合中所有数都是同余的。
sum+=num[i]; //
if(sum>k*(k+1)/2){ //剪枝
break;
}
}
if(sum>k*(k+1)/2){
continue;
}
cn=0,mark=0;
for(j=0;j<n&&(!mark);j++){ //暴力判断m是否满足题目的要求
mod=a[j]%m;
if(!flag[mod]){
flag[mod]=1;
}else{
cn++;
if(cn>k){
mark=1;
}
}
}
for(j=0;j<n;j++){ //还原
flag[a[j]%m]=0;
}
if(!mark){
mark=m;
break;
}
}
printf("%d\n",mark);
}
return 0;
}

  

CF 303C——Minimum Modular——————【剪枝】的更多相关文章

  1. codeforces 303C. Minimum Modular(数论+暴力+剪枝+贪心)

    You have been given n distinct integers a1, a2, ..., an. You can remove at most k of them. Find the ...

  2. 51nod 1217 Minimum Modular

    N个不同的数a[1],a[2]...a[n],你可以从中去掉K个数,并且找到一个正整数M,使得剩下的N - K个数,Mod M的结果各不相同,求M的最小值. Input 第1行:2个数N, K,中间用 ...

  3. 51nod 1217 Minimum Modular(数论+暴力)

    根据抽屉原理显然m>=(n-K) 于是在[n-K,max(a1..an)+1]的范围中枚举m 考虑K=0的做法... 如果a[i]≡a[j](mod m),则有m|(a[i]-a[j]),只要O ...

  4. cf 609E.Minimum spanning tree for each edge

    最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...

  5. NOIP2018提高组金牌训练营——数论专题

    地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...

  6. codeforce303C-Minimum Modular-剪枝,暴力

    Minimum Modular 题意:就是在一堆数字中,每一个数字对m取模不能等于这堆数字中的其他数字,同时给了K个机会可以删除一些数字.求最小的m: 思路:我一开始完全没思路,队长说的并查集什么的不 ...

  7. Codeforces Round #339 (Div.2)

    A. Link/Cut Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  8. codeforces 613B B. Skills(枚举+二分+贪心)

    题目链接: B. Skills time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  9. [CodeForces - 614D] D - Skills

    D - Skills Lesha plays the recently published new version of the legendary game hacknet. In this ver ...

随机推荐

  1. Django 实现购物车功能

    购物车思路:使用 session 功能识别不同浏览器用户,使得用户不管是否登录了网站,均能够把想要购买的产品放在某个地方,之后随时可以显示或修改要购买的产品,等确定了之后再下订单,购物车可以用来暂存商 ...

  2. Python实现——一元线性回归(最小二乘法)

    2019/3/24 线性回归--最小二乘法公式法 暂时用python成功做出来了图像,但是其中涉及到的公式还是更多的来自于网络,尤其是最小二乘法公式中的两个系数的求解,不过目前看了下书高数也会马上提及 ...

  3. dsp之BF531笔记

    获得更多资料欢迎进入我的网站或者 csdn或者博客园 很久以前的BF531的笔记,觉得有用分享出来.摘自于open dsp 通用Gpio ADSP-BF53x 处理器上有16 个PF 接口,这些接口就 ...

  4. 跟我一起读postgresql源码(三)——Rewrite(查询重写模块)

    上一篇博文我们阅读了postgresql中查询分析模块的源码.查询分析模块对前台送来的命令进行词法分析.语法分析和语义分析后获得对应的查询树(Query).在获得查询树之后,程序开始对查询树进行查询重 ...

  5. 跟我一起读postgresql源码(二)——Parser(查询分析模块)

    上篇博客简要的介绍了下psql命令行客户端的前台代码.这一次,我们来看看后台的代码吧. 十分不好意思的是,上篇博客我们只说明了前台登陆的代码,没有介绍前台登陆过程中,后台是如何工作的.即:后台接到前台 ...

  6. SqlBulkCopy使用注意事项

    1. 有标识列的表 1.1 SqlBulkCopyOptions.KeepIdentity  必须设置!否则会出现复制过去的数据产生标识列发现变化的情况! 1.2 如果原表的标识列即为主键, 那按1. ...

  7. NAND NOR Flash 和MTD

    来自:http://blog.sina.com.cn/s/blog_6b489d5e0102xm62.html 一.NAND和NOR Flash 一般来说,快闪记忆体可分为两大规格,一个是NAND, ...

  8. JAVA GET 和 POST 的区别

    GET 和 POST 的区别 GET请注意,查询字符串(名称/值对)是在 GET 请求的 URL 中发送的:/test/demo_form.asp?name1=value1&name2=val ...

  9. 网络控制芯片AX88796B系列使用简介

    目录 1. 特性 2. 结构框图 3. 接收 3.1 缓存空间 3.2 Receiver Buffer Ring 3.3 接收机制 4. 发送 5. 编程过程简要说明 5.1 初始化配置 5.2 接收 ...

  10. Python之freshman01

    列表与元组.字典 1.列表list:["ele1","ele2","ele3","ele0"] 列表是一组任意类型的值, ...