题目:

We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Note that '0' is not included.)

Now, we write numbers using these digits, using each digit as many times as we want.  For example, if D = {'1','3','5'}, we may write numbers such as '13', '551', '1351315'.

Return the number of positive integers that can be written (using the digits of D) that are less than or equal to N.

Example 1:

Input: D = ["1","3","5","7"], N = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.

Example 2:

Input: D = ["1","4","9"], N = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits of D.

Note:

  1. D is a subset of digits '1'-'9' in sorted order.
  2. 1 <= N <= 10^9

题意理解:

给了你一个string数组D,和一个数字N。D中每个string包含的是一个数字字符。相当于就是D中包含了LD个一位数字,然后用这些数字进行组合,只要比N小就满足条件,问一共有多少种满足条件的组合可能。

DP思想:

对于D的组合,当组合的数字长度小于N的长度时,很好理解,就是D的size的i次幂相加,1 <= i < D;

当组合的数字长度等于N的长度时,情况就有点复杂了,但是我们可以通过DP的思想来理解。

即对于数字N从右往左扫描,如果对于一个扫描的点,再遍历D。

1.如果D中的一个数字小于N中的当前值,那么当前位置的组合数就加上D长度的一个次幂,具体多少次幂,取决于N中当前位置,相当于就是 1XXX, 2abc 组合数就是D长度的3次幂。

2.如果D中的一个数字等于N中的当前值,那么就加上前一个位置的组合数,相当于就是 1XXXX 和 1XXXX;组合数取决于后4位。

3.如果D中的一个数字比N中的当前值大,其实不用处理,因为我们设定的DP数组初始值都是0;

需要注意的就是DP数组要多开一个位置,存储最后一个值1,自己随便写一个就知道原因了。

代码:

class Solution {
public:
int atMostNGivenDigitSet(vector<string>& D, int N) {
string s = to_string(N);
int LD = D.size();
int LN = s.size();
int ans = 0;
int DP[LN+1];
memset(DP, 0, sizeof(DP));
DP[LN] = 1; for(int i = LN-1; i >= 0; i--)
{
int nt = s[i] - '0';
for(int j = 0; j < LD; j++)
{
if(D[j][0] - '0' == nt)
DP[i] += DP[i+1];
else if(D[j][0] - '0' < nt)
DP[i] += pow(LD, LN - i - 1);
} } for(int j = 1; j < LN; j++)
{ DP[0] += pow(LD, j);
} return DP[0];
}
};

  

LeetCode902. Numbers At Most N Given Digit Set的更多相关文章

  1. [Swift]LeetCode902. 最大为 N 的数字组合 | Numbers At Most N Given Digit Set

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Not ...

  2. 902. Numbers At Most N Given Digit Set

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Not ...

  3. [LeetCode] 902. Numbers At Most N Given Digit Set 最大为 N 的数字组合

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Not ...

  4. LeetCode 902. Numbers At Most N Given Digit Set

    应该是常数 N的位数时间级别 我的这个方法超时很严重...但是特此记录 费劲巴拉写的... 超时: int atMostNGivenDigitSet(char** D, int DSize, int ...

  5. 由最多N个给定数字集组成的数字 Numbers At Most N Given Digit Set

    2019-10-14 22:21:29 问题描述: 问题求解: 暴力求解必然会超时,那么就需要考虑数学的方法来降低时间复杂度了. public int atMostNGivenDigitSet(Str ...

  6. F. Igor and Interesting Numbers

    http://codeforces.com/contest/747/problem/F cf #387 div2 problem f 非常好的一道题.看完题,然后就不知道怎么做,感觉是dp,但是不知道 ...

  7. About Intel® Processor Numbers

    http://www.intel.com/content/www/us/en/processors/processor-numbers.html About Intel® Processor Numb ...

  8. ural 1289. One Way Ticket

    1289. One Way Ticket Time limit: 1.0 secondMemory limit: 64 MB A crowed of volunteers dressed in the ...

  9. CSUFT 1003 All Your Base

    1003: All Your Base Time Limit: 1 Sec      Memory Limit: 128 MB Submit: 4      Solved: 2 Description ...

随机推荐

  1. SQL SERVER FOR XML PATH合并字符串

    两种方式,效率立竿见影 ------------------------------------------------ SET STATISTICS TIME ON DECLARE @OrderSt ...

  2. Ubuntu无法安装rpm包,ubuntu RPM should not be used directly install RPM packages, use Alien instead!

    Ubuntu无法安装rpm包,ubuntu RPM should not be used directly install RPM packages, use Alien instead! 简单来说, ...

  3. 16-math_M_PI

    头文件math.h中宏定义的是M_PI#define M_PI 3.14159265358979323846所以不需要记忆PI的值了可以直接用

  4. 我搭建大数据Hadoop完全分布式环境遇到的坑---hadoop: command not found

    搭建大数据hadoop环境,遇到很多问题,这里记录一部分,以备以后查看. [遇到问题].在安装配置完hadoop以后,需要格式化namenode,输入指令:hadoop namenode -forma ...

  5. 特征不同取值/区间下 label 的均值曲线

    def two_plot(df, feat, tick_label=None, rotate_tick=60): print('\n### 不同取值/区间下 label 的均值曲线') fig, ax ...

  6. Windows下用Nginx配置遇到的问题

    Nginx是一款轻量级的web服务器/反向代理服务器,更详细的释义自己百度了.目前国内像新浪.网易等都在使用它.先说下我的服务器软件环境: 系统:Windows Server + IIS + ngin ...

  7. [GO]给导入包起别名

    package main import io "fmt" //引用fmt这个包时,名字重命名为io import _ "os" //引用os这个包,但是不调用, ...

  8. Azure 网站、云服务和虚拟机比较

    最后更新时间(英文版):09/24/2014 最后更新时间(中文版):04/11/2015 Azure 提供几种方式托管 web 应用程序,如 Azure 网站.云服务和虚拟机.查看这些不同的选项后, ...

  9. 人脸识别 人工智能(AI)

    .. 如何通过AI实现 用我自己的数据集:能识别几张人脸.能否判断相似度.能否认出.

  10. 编写高质量代码改善C#程序的157个建议——建议1:正确操作字符串

    最近拜读了陆敏技老师的<编写高质量代码改善C#程序的157个建议>,感觉不错,决定把笔记整理一遍. 建议1: 正确操作字符串 字符串应该是所有编程语言中使用最频繁的一种基础数据类型.如果使 ...