描述

你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中。
例如:
5 2 8
1 3 _
4 6 7
在游戏过程中,可以把空格与其上、下、左、右四个方向之一的数字交换(如果存在)。
例如在上例中,空格可与左、上、下面的数字交换,分别变成:
5 2 8       5 2 _      5 2 8
1 _ 3       1 3 8      1 3 7
4 6 7       4 6 7      4 6 _

奇数码游戏是它的一个扩展,在一个n*n的网格中进行,其中n为奇数,1个空格和1~n*n-1这n*n-1个数恰好不重不漏地分布在n*n的网格中。
空格移动的规则与八数码游戏相同,实际上,八数码就是一个n=3的奇数码游戏。

现在给定两个奇数码游戏的局面,请判断是否存在一种移动空格的方式,使得其中一个局面可以变化到另一个局面。

输入格式

多组数据,对于每组数据:
第1行一个整数n,n<500,n为奇数。
接下来n行每行n个整数,表示第一个局面。
接下来n行每行n个整数,表示第二个局面。
局面中每个整数都是0~n*n-1之一,其中用0代表空格,其余数值与奇数码游戏中的意义相同,保证这些整数的分布不重不漏。

输出格式

对于每组数据,若两个局面可达,输出TAK,否则输出NIE。

样例输入

3 1 2 3 0 4 6 7 5 8 1 2 3 4 5 6 7 8 0 1 0 0

样例输出

TAK TAK

 #include<cstdio>
//#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
//#include<queue>
//#include<set>
#define INF 0x3f3f3f3f
#define N 250005
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define D_e(x) printf("\n&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
#define D_e_Matrix for(re int i=1;i<=n;++i){for(re int j=1;j<=m;++j)printf("%d ",g[i][j]);putchar('\n');}
using namespace std;
// The Code Below Is Bingoyes's Function Forest.
Ii read(){
int s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(ll x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
/*
Iv Floyd(){
R(k,1,n)
R(i,1,n)
if(i!=k&&dis[i][k]!=INF)
R(j,1,n)
if(j!=k&&j!=i&&dis[k][j]!=INF)
Cmin(dis[i][j],dis[i][k]+dis[k][j]);
}
Iv Dijkstra(int st){
priority_queue<int>q;
R(i,1,n)dis[i]=INF;
dis[st]=0,q.push((nod){st,0});
while(!q.empty()){
int u=q.top().x,w=q.top().w;q.pop();
if(w!=dis[u])continue;
for(re int i=head[u];i;i=e[i].nxt){
int v=e[i].pre;
if(dis[v]>dis[u]+e[i].w)
dis[v]=dis[u]+e[i].w,q.push((nod){v,dis[v]});
}
}
}
Iv Count_Sort(int arr[]){
int k=0;
R(i,1,n)
++tot[arr[i]],Cmax(mx,a[i]);
R(j,0,mx)
while(tot[j])
arr[++k]=j,--tot[j];
}
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>1;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+1,right,sum);
int i=left,j=mid+1,k=left;
while(i<=mid&&j<=right)
arr[i]<=arr[j]?
tmp[k++]=arr[i++]:
tmp[k++]=arr[j++],sum+=mid-i+1;//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
Iv Bucket_Sort(int a[],int left,int right){
int mx=0;
R(i,left,right)
Cmax(mx,a[i]),++tot[a[i]];
++mx;
while(mx--)
while(tot[mx]--)
a[right--]=mx;
}
*/
int n,m,a[N],tmp[N];
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+,right,sum);
int i=left,j=mid+,k=left;
while(i<=mid&&j<=right)
(arr[i]<=arr[j])?
tmp[k++]=arr[i++]:
(tmp[k++]=arr[j++],sum+=mid-i+);//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
#define PutTAK printf("TAK\n")
#define PutNIE printf("NIE\n")
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int sum_start=,sum_end=;
n*=n;
if(!n)
PutNIE;
//Judge Case Of n=0 Specially
if(n==){
(read()==read())?
PutTAK:
PutNIE;
continue;
} //Judge Case Of n=1 Specially
int cnt_num=;
R(i,,n){
int num=read();
if(num)
a[++cnt_num]=num;
}
Merge_Sort(a,,cnt_num,sum_start);
cnt_num=;
R(i,,n){
int num=read();
if(num)
a[++cnt_num]=num;
}
Merge_Sort(a,,cnt_num,sum_end);
((sum_start&)==(sum_end&))?
PutTAK:
PutNIE;
}
return ;
}
/*
Note:
Error:
*/

Odd number problem的更多相关文章

  1. Buge's Fibonacci Number Problem

    Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, ...

  2. odd number、 even number

    odd number 奇数 even number 偶数

  3. 《高性能javascript》 --- in case of odd number of items(奇怪的条目的数量)

    不知道是做着故意放的还是什么原因.总之运行后就会出现问题(奇怪的条目的数量) function merge(left, right){ var result = []; while (left.len ...

  4. shiro : java.lang.IllegalArgumentException: Odd number of characters.

    shiro使用的时候: java.lang.IllegalArgumentException: Odd number of characters.    at org.apache.shiro.cod ...

  5. 1. 找出数组中的单身狗OddOccurrencesInArray Find value that occurs in odd number of elements.

    找出数组中的单身狗: 1. OddOccurrencesInArray Find value that occurs in odd number of elements. A non-empty ze ...

  6. POJ 1350 Cabric Number Problem (模拟)

    题目链接 Description If we input a number formed by 4 digits and these digits are not all of one same va ...

  7. 【HDOJ】3509 Buge's Fibonacci Number Problem

    快速矩阵幂,系数矩阵由多个二项分布组成.第1列是(0,(a+b)^k)第2列是(0,(a+b)^(k-1),0)第3列是(0,(a+b)^(k-2),0,0)以此类推. /* 3509 */ #inc ...

  8. PERFECT NUMBER PROBLEM(思维)

     题目链接:https://nanti.jisuanke.com/t/38220 题目大意:这道题让我们判断给定数字是否为完美数字,并给来完美数字的定义,就是一个整数等于除其自身之外的所有的因子之和. ...

  9. 2106 Problem F Shuffling Along 中石油-未提交-->已提交

    题目描述 Most of you have played card games (and if you haven’t, why not???) in which the deck of cards ...

随机推荐

  1. oracle级联更新与级联删除

    Oracle级联删除:可以使用外键约束来实现,建立表的主外键关系,给列设置级联删除.如下: ——创建了CLASS表,并设置ID字段为主键. -- Create tablecreate table CL ...

  2. Ubuntu下配置Apache的Worker模式

    其实Apache本身的并发能力是足够强大的,但是Ubuntu默认安装的是Prefork模式下的Apache.所以导致很多人后面盲目的去 安装lighttpd或者nginx一类替代软件.但是这类软件有一 ...

  3. 26.COUNT() 函数

    COUNT() 函数返回匹配指定条件的行数. SQL COUNT() 语法 SQL COUNT(column_name) 语法 COUNT(column_name) 函数返回指定列的值的数目(NULL ...

  4. 使用原理视角看 Git

    1. Git 的玩法 欢迎来到 Coding 技术小馆,我叫谭贺贺,目前我在 Coding.net 主要负责 WebIDE 与 Codeinsight 的开发.我今天带来的主要内容是 Git 的原理与 ...

  5. Python3 Scrapy + Selenium + 阿布云爬取拉钩网学习笔记

    1 需求分析 想要一个能爬取拉钩网职位详情页的爬虫,来获取详情页内的公司名称.职位名称.薪资待遇.学历要求.岗位需求等信息.该爬虫能够通过配置搜索职位关键字和搜索城市来爬取不同城市的不同职位详情信息, ...

  6. Java反射学习:深入学习Java反射机制

    一.Java反射的理解(反射是研究框架的基础之一) Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取的 ...

  7. PS插件开发plugin

    Photoshop插件开发 VC++制作Photoshop自动化插件:http://blog.sina.com.cn/s/blog_73c52fda0101c7hw.html Photoshop 的扩 ...

  8. 如何快速搭建基于python+appium的自动化测试环境

    首先申明本文是基本于Python与Android来快速搭建Appium自动化测试环境: 主要分为以下几个步骤: 前提条件: 1)安装与配置python环境,打开 Python官网,找到“Downloa ...

  9. channel_id以及type_id的内容

  10. C#多线程编程实战1.5检测线程状态

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...