莫队,卡常数


题目地址

  • 思路

    • 设\(\text{Vis[i]}\)为元素\(\text{i}\)在区间\(\text{[L,R]}\)的出现次数

    • 考虑区间\(\text{[L,R]}\)和元素\(\text{i}\),首次取出的概率为\(\frac{Vis[i]}{R-L+1}\),再次取出的概率是\(\frac{Vis[i]-1}{R-L}\)

    • 对于区间\(\text{[L,R]}\),答案为\(\sum_{i=1}^{N}{\frac{Vis[i](Vis[i]-1)}{(R-L)*(R-L+1)}}\)。

    • 这样,每次给变\(\text{[L,R]}\),分子的变化可以通过对前、后两项的值做差得到:

      • 设X=Vis[i],有:

      \[(X+1)X-(X)(X-1)=2X
      \]

    • 莫队这样修改即可。

  • Code

    • /**************************************************************
      Problem: 2038
      User: Bj2002
      Language: C++
      Result: Accepted
      Time:11036 ms
      Memory:2584 kb
      ****************************************************************/ #include <stdio.h>
      #include <string.h>
      #include <algorithm>
      #define GC getchar()
      #define Clean(X,K) memset(X,K,sizeof(X))
      using namespace std ;
      int Qread () {
      int X = 0 ;
      char C = GC ;
      while (C > '9' || C < '0') C = GC ;
      while (C >='0' && C <='9') {
      X = X * 10 + C - '0' ;
      C = GC ;
      }
      return X ;
      }
      long long GCD(long long M, long long N) {
      while (N != 0) {
      long long T = M % N;
      M = N;
      N = T;
      }
      return M;
      }
      const int Maxn = 50005 ;
      int N , M , A[Maxn] , Vis[Maxn] ;
      long long Ans[Maxn] , Sum[Maxn];
      struct Node {
      int Left , Right , Place;
      };
      Node Q[Maxn] ;
      bool Cmp (const Node &X , const Node &Y) {
      if (X.Left != Y.Left ) return X.Left < Y.Left ;
      if (X.Left & 1) return X.Right < Y.Right ;
      else return X.Right > Y.Right ;
      }
      bool Cmp2 (const Node &X , const Node &Y) {
      return X.Place < Y.Place ;
      }
      void Qwrite(int X) {
      if(X > 9) Qwrite(X / 10);
      putchar(X % 10 + '0');
      } int main () {
      // freopen ("P1494.in" , "r" , stdin) ;
      // freopen ("P1494.out", "w" , stdout) ;
      N = Qread () , M = Qread ();
      for (int i = 1 ; i <= N; ++ i) A[i] = Qread () ;
      for (int i = 1 ; i <= M; ++ i) Q[i].Left = Qread () , Q[i].Right = Qread () , Q[i].Place = i ;;
      sort (Q + 1 , Q + 1 + M , Cmp) ;
      Clean (Vis , 0) ;
      int L , R ;
      long long Now = 0 ;
      L = R = Q[1].Left ;
      Vis[A[L]] = 1 ;
      for (int i = 1 ; i <= M; ++ i) {
      while (L < Q[i].Left ) {
      -- Vis[A[L]] ;
      Now -= (Vis[A[L]] << 1) ;
      ++ L ;
      }
      // cout << L <<' '<<R <<' '<<Now<<endl;
      while (R < Q[i].Right ) {
      ++ R ;
      Now += (Vis[A[R]] << 1) ;
      ++ Vis[A[R]] ;
      }
      // cout << L <<' '<<R <<' '<<Now<<endl;
      while (R > Q[i].Right ) {
      -- Vis[A[R]] ;
      Now -= (Vis[A[R]] << 1) ;
      -- R ;
      }
      // cout << L <<' '<<R <<' '<<Now<<endl;
      Ans[Q[i].Place] = Now , Sum[Q[i].Place ] = ((long long)Q[i].Right - Q[i].Left ) * (Q[i].Right - Q[i].Left + 1) ;
      }
      std :: sort (Q + 1 , Q + 1 + M , Cmp2) ;
      for (int i = 1 ; i <= M; ++ i) {
      if (Q[i].Left == Q[i].Right ) printf ("0/1\n") ;
      else {
      int K = GCD (Ans[i] , Sum[i]) ;
      Ans[i] /= K , Sum[i] /= K ;
      printf ("%lld/%lld\n" , Ans[i] , Sum[i]) ;
      }
      }
      fclose (stdin) , fclose (stdout) ;
      return 0 ;
      }

Thanks!

[题解] 2038: [2009国家集训队]小Z的袜子(hose)的更多相关文章

  1. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  4. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  8. 2038: [2009国家集训队]小Z的袜子(hose) (莫队算法)

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...

  9. 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9472  Solved: 4344 Desc ...

随机推荐

  1. SSM-SpringMVC-28:SpringMVC类型转换之自定义日期类型转换器

     ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 例子很简易,要明白的是思路,话不多说,开讲 上篇博客不是说springmvc默认的日期转换格式是yyyy/M ...

  2. Java 学习路线之四个阶段

    写这篇总结,主要是记录下自己的学习经历,算是自己对知识的一个回顾.也给想要学习 Java 的提供一些参考,对于一些想要学习Java,又不知道从哪里下手,以及现在有哪些主流的 Java 技术.想必大家学 ...

  3. MySQL,简单了解下、

    第一章 数据备份与导入导出 1.1.备份基本概念介绍 1.2.mysqldump详解 1.3.mydumper浅析 1.4.MySQL物理备份基本操作 1.5.了解mysqlpump工具 1.6.数据 ...

  4. Heroku创始人Adam Wiggins发布十二要素应用宣言

    Heroku是业内知名的云应用平台,从对外提供服务以来,他们已经有上百万应用的托管和运营经验.前不久,创始人Adam Wiggins根据这些经验,发布了一个“十二要素应用宣言(The Twelve-F ...

  5. JavaScript Array+String对象的常用方法

    Array 对象 Array 对象用于在单个的变量中存储多个值. 创建 Array 对象的语法: new Array(); new Array(size); new Array(element0, e ...

  6. &amp;

    在 xml 中,不能直接使用 '&' 表示 '&',要转译为 '&'  (转译序列个字符不能有空格,区分大小写,以';'结束,不要丢了分号哦 ;    amp;不是" ...

  7. java函数式编程之Consumer

    参考https://blog.csdn.net/z345434645/article/details/53794724 https://blog.csdn.net/chuji2012/article/ ...

  8. BZOJ_1146_[CTSC2008]网络管理Network_主席树+树状数组

    BZOJ_1146_[CTSC2008]网络管理Network_主席树 Description M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个 部门 ...

  9. BZOJ_1834_[ZJOI2010]network 网络扩容_费用流

    BZOJ_1834_[ZJOI2010]network 网络扩容_费用流 题意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的 ...

  10. BZOJ_1433_[ZJOI2009]假期的宿舍_二分图匹配

    BZOJ_1433_[ZJOI2009]假期的宿舍_二分图匹配 题意: 学校放假了······有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题.比如A 和B都是学校的学生,A要回 ...