【Luogu2458】保安站岗(动态规划)

题面

题目描述

五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序。

已知整个地下超市的所有通道呈一棵树的形状;某些通道之间可以互相望见。总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同。

一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排保安。

编程任务:

请你帮助超市经理策划安排,在能看守全部通道端点的前提下,使得花费的经费最少。

输入输出格式

输入格式:

第1行 n,表示树中结点的数目。

第2行至第n+1行,每行描述每个通道端点的信息,依次为:该结点标号i(0<i<=n),在该结点安置保安所需的经费k(<=10000),该边的儿子数m,接下来m个数,分别是这个节点的m个儿子的标号r1,r2,...,rm。

对于一个n(0 < n <= 1500)个结点的树,结点标号在1到n之间,且标号不重复。

输出格式:

最少的经费。

输入输出样例

输入样例#1:

6

1 30 3 2 3 4

2 16 2 5 6

3 5 0

4 4 0

5 11 0

6 5 0

输出样例#1:

25

说明

样例说明:在结点2,3,4安置3个保安能看守所有的6个结点,需要的经费最小:25

题解

题目大意是,给定一棵树,每一个节点可以控制和他相邻的节点,问最少用多少代价可以控制整棵树

因为每个节点只能够控制相邻的节点

所以设\(f[i][0/1/2]\)分别表示当前节点\(i\)分别被儿子/自己/父亲所控制时的最小代价

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 1600
#define INF 1e9
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next;
}e[MAX<<1];
int h[MAX],cnt=1;
int W[MAX],n;
int f[MAX][3];
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
void Plus(int &a,int b)
{
a+=b;
if(a>INF)a=INF;
}
void dfs(int u,int ff)
{
f[u][1]=W[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
dfs(v,u);
Plus(f[u][0],min(f[v][0],f[v][1]));
Plus(f[u][1],min(f[v][0],min(f[v][1],f[v][2])));
Plus(f[u][2],min(f[v][0],f[v][1]));
}
int tot=f[u][0],ret=INF;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
ret=min(ret,tot-min(f[v][0],f[v][1])+f[v][1]);
}
f[u][0]=ret;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
int bh=read();
W[bh]=read();
int m=read();
while(m--)
{
int v=read();
Add(bh,v);Add(v,bh);
}
}
dfs(1,0);
printf("%d\n",min(f[1][1],f[1][0]));
return 0;
}

【Luogu2458】保安站岗(动态规划)的更多相关文章

  1. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  2. 【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]

    [题解]保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006] 传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\) [题目描述 ...

  3. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  4. [Luogu2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  5. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  7. 洛谷P2458 保安站岗

    传送门啦 分析: 树形dp刚刚入门,这是我做的第一个一个点同时受父亲节点和儿子节点控制的题目. 由于这个题中某一个点放不放保安与父亲和儿子都有关系(因为线段的两个端点嘛),所以我们做题时就要考虑全面. ...

  8. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  9. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

随机推荐

  1. [Python Study Notes]WdSaveFormat 枚举

    WdSaveFormat 枚举 指定要在保存文档时使用的格式. 版本信息 已添加版本: 名称 值 说明 wdFormatDocument 0 Microsoft Word 格式. wdFormatDO ...

  2. 基于Mysql数据库的SSM分页查询

    前言: Hello,本Y又来了,"分页"在我们使用软件的过程中是一个很常见的场景,比如博客园对于每个博主的博客都进行了分页展示.可以简单清晰的展示数据,防止一下子将过多的数据展现给 ...

  3. 多个onload事件写法

    window.onload=function(){ function(a); function(b); }

  4. 使用单元素的枚举类型实现Singleton

    从java1.5版本开始,实现singleton出现了第三种方式: public enum SingleTon { INSTANCE; public void speak() { System.out ...

  5. WinForm中ClickOnce发布至广域网

    ClickOnce智能客户端,是微软提供比较早的一项技术,用于实现WinForm开发的应用程序能够自动更新,省去给每台客户端升级带来的困扰. 从网上的贴子里看,有的说好用,有的说不好用.客观的说,微软 ...

  6. EntityFrameWork连接多Db配置

    如题所示,EF作为微软主推的ORM工具,最新版本已经是7,说明有很多人在使用它做项目.在使用过程中,可能会连接不同的数据库,本文介绍的是连接SqlServer,MySql和SQLite三种,并且可以互 ...

  7. Linux系统上安装JDK1.8

    1,下载jdk1.8 首先进入jdk下载目录:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-213315 ...

  8. Yii2 场景

    下面给大家介绍一下 yii2.0 场景的使用. 现在在 post表里面有 title image content 三个的字段,当我创建一个 post 的时候,我想三个字段全部是必填项,但是你修改的时候 ...

  9. PHP调用外部命令

    ------------------------------------------------------------------ 一.PHP调用外部命令总结                     ...

  10. CodeForces-747E

    这几天好懒,昨天写的题,今天才来写博客.... 这题你不知道它究竟有多少层,但是知道字符串长度不超过10^6,那么它的总容量是被限定的,用一个二维动态数组就OK了.输入字符串后,可以把它按照逗号分割成 ...