使用Atlas进行元数据管理之Type(类型)
背景:笔者和团队的小伙伴近期在进行数据治理/元数据管理方向的探索, 在接下来的系列文章中, 会陆续与读者们进行分享在此过程中踩过的坑和收获。
元数据管理系列文章:
[0] - 使用Atlas进行元数据管理之Atlas简介
[1] - 使用Atlas进行元数据管理之Glossary(术语)
[2] - 使用Atlas进行元数据管理之Type(类型)
1. 概述
Atlas允许用户为他们想要管理的元数据对象定义模型。该模型由称为type(类型)
的定义组成。称为entities(实体)
的type(类型)
实例表示受管理的实际元数据对象。 Type System是一个允许用户定义和管理类型和实体的组件。开箱即用的Atlas管理的所有元数据对象(例如Hive表)都使用类型建模并表示为实体。要在Atlas中存储新类型的元数据,需要了解类型系统组件的概念。
2. Types(类型)
Atlas中的Type
是对特定类型的元数据对象如何存储和访问的定义。Type表示定义元数据对象属性的一个或一组属性。具有开发基础的用户能了解到,类型就相当于面向对象编程语言的“Class”定义或关系数据库的“table schema”。
使用Atlas的类型的其中一个示例是Hive表。 Hive表定义了以下属性:
Name: hive_table
TypeCategory: Entity
SuperTypes: DataSet
Attributes:
name: string
db: hive_db
owner: string
createTime: date
lastAccessTime: date
comment: string
retention: int
sd: hive_storagedesc
partitionKeys: array<hive_column>
aliases: array<string>
columns: array<hive_column>
parameters: map<string,string>
viewOriginalText: string
viewExpandedText: string
tableType: string
temporary: boolean
从上面的例子中可以注意到以下几点:
Atlas中的类型(Type)由
name
唯一标识Type具有元类型。Atlas中有以下元类型:
- 原始元类型(Primitive metatypes):boolean,byte,short,int,long,float,double,biginteger,bigdecimal,string,date
- 枚举元型(Enum metatypes)
- 集合元类型(Collection metatypes:):array, map
- 复合元类型(Composite metatypes):Entity, Struct, Classification, Relationship
实体(Entity)和分类(Classification)类型可以从其他类型继承,称为“超类型/父类型”(supertype) ,它包括在超类型中定义的属性。这允许建模者在一组相关类型等中定义公共属性。类似于面向对象语言如何为类定义父类。 Atlas中的类型也可以从多个超类型扩展。
- 在此示例中,每个配置单元表都从称为
DataSet
的预定义超类型扩展。稍后将提供有关此预定义类型的更多详细信息。
- 在此示例中,每个配置单元表都从称为
具有元类型
Entity
,Struct
,Classification
或Relationship
的类型可以具有属性的集合。每个属性都有一个名称(例如:name
)和一些其他相关属性。可以使用表达式type_name.attribute_name
引用属性。值得注意的是,属性本身是使用Atlas元类型定义的。- 在此示例中,hive_table.name是String,hive_table.aliases是一个字符串数组,hive_table.db是指一个名为hive_db的类型的实例,依此类推。
属性中的类型引用(如hive_table.db)特别有趣,使用这样的属性,我们可以定义Atlas中定义的两种类型之间的任意关系,从而构建丰富的模型。此外,还可以将引用列表收集为属性类型(例如,hive_table.columns,表示从hive_table到hive_column类型的引用列表)
3. Entities(实体)
Atlas中的entity
是type
的特定值或实例,因此表示现实世界中的特定元数据对象。用我们对面向对象编程语言的类比,实例(instance)
是某个类(Class)
的对象(Object)
。
实体的其中一个示例就是Hive表。Hive在'default'数据库中有一个名为'customers'的表。该表是hive_table类型的Atlas中的“实体”。由于是实体类型的实例,它将具有作为Hive表'type'的一部分的每个属性的值,例如:
guid: "9ba387dd-fa76-429c-b791-ffc338d3c91f"
typeName: "hive_table"
status: "ACTIVE"
values:
name: “customers”
db: { "guid": "b42c6cfc-c1e7-42fd-a9e6-890e0adf33bc", "typeName": "hive_db" }
owner: “admin”
createTime: 1490761686029
updateTime: 1516298102877
comment: null
retention: 0
sd: { "guid": "ff58025f-6854-4195-9f75-3a3058dd8dcf", "typeName": "hive_storagedesc" }
partitionKeys: null
aliases: null
columns: [ { "guid": ""65e2204f-6a23-4130-934a-9679af6a211f", "typeName": "hive_column" }, { "guid": ""d726de70-faca-46fb-9c99-cf04f6b579a6", "typeName": "hive_column" }, ...]
parameters: { "transient_lastDdlTime": "1466403208"}
viewOriginalText: null
viewExpandedText: null
tableType: “MANAGED_TABLE”
temporary: false
从上面的例子中可以注意到以下几点:
实体类型的每个实例都由唯一标识符GUID标识。此GUID由Atlas服务器在定义对象时生成,并在实体的整个生命周期内保持不变。在任何时间点,都可以使用其GUID访问此特定实体。
- 在此示例中,默认数据库中的“customers”表由GUID“9ba387dd-fa76-429c-b791-ffc338d3c91f”唯一标识。
实体具有给定类型,并且类型的名称随实体定义一起提供。
- 在此示例中,'customers'表是'hive_table'类型。
该实体的值是hive_table类型定义中定义的属性的所有属性名称及其值的映射。
属性值将根据属性的数据类型。实体类型属性将具有AtlasObjectId类型的值
有了实体的这个设计,我们现在可以看到Entity和Struct元类型之间的区别。实体(Entity)和结构(Entity)都构成其他类型的属性。但是,实体类型的实例具有标识(具有GUID值),并且可以从其他实体引用(例如,从hive_table实体引用hive_db实体)。 Struct类型的实例没有自己的标识。 Struct类型的值是在实体本身内“嵌入”的属性集合。
3. Attributes(属性)
我们已经看到,属性(attributes)是在实体(Entity),结构(Struct),分类(Classification)和关系(Relationship)等元类型中定义的。但我们将属性列举为具有名称和元类型值。然而,Atlas中的attributes具有一些properties,这些properties定义了与类型系统相关的更多概念。
attributes具有以下properties:
name: string,
typeName: string,
isOptional: boolean,
isIndexable: boolean,
isUnique: boolean,
cardinality: enum
上述属性具有以下含义:
name
: 属性的名称dataTypeName
: 属性的元类型名称(native, collection, composite))isComposite
:- 该标志表示建模的一个方面。如果将属性定义为复合(composite),则意味着它不能具有独立于其所包含的实体的生命周期。这个概念的一个很好的示例是构成hive表的一部分的列集。由于列在hive表外部没有意义,因此它们被定义为复合属性。
- 必须在Atlas中创建复合属性及其包含的实体。即,必须与hive表一起创建配置单元列。
isIndexable
- 标志指示是否应该对此属性建立索引,以便可以使用属性值作为谓词来执行查找,并且可以有效地执行查找。
isUnique
- 同样与索引相关。如果指定为唯一,则表示在JanusGraph中为此属性创建了一个特殊索引,允许基于相等的查找。
- 具有该标志的真值的任何属性都被视为主键,以将该实体与其他实体区分开。因此,应该注意确保此属性确实在现实世界中为唯一属性建模。
- 对于例如考虑hive_table的name属性。在单独的情况下,名称不是hive_table的唯一属性,因为具有相同名称的表可以存在于多个数据库中。如果Atlas在多个集群中存储hive表的元数据,那么即使是一对(数据库名称,表名)也不是唯一的。在物理世界中,只有集群位置,数据库名称和表名称才能被视为唯一。
multiplicity
: 标示该属性是必选(required),可选(optional)的还是可以是多值的(multi-valued)。如果实体的属性值定义与类型定义中的多重性声明不匹配,则这将违反约束,并且实体添加将失败。因此,该字段可用于定义元数据信息的一些约束。
根据上面的内容,让我们展开下面的hive表的一个attributes的属性定义。让我们看一下名为'db'的属性,它表示hive表所属的数据库:
db:
"name": "db",
"typeName": "hive_db",
"isOptional": false,
"isIndexable": true,
"isUnique": false,
"cardinality": "SINGLE"
请注意“isOptional = true”约束 - 如果没有db引用,则无法创建表实体。
columns:
"name": "columns",
"typeName": "array<hive_column>",
"isOptional": optional,
"isIndexable": true,
“isUnique": false,
"constraints": [ { "type": "ownedRef" } ]
请注意列的“ownedRef”约束。通过这样,我们指出定义的列实体应始终绑定到它们所定义的表实体。
通过此描述和示例,您将能够意识到属性定义可用于影响Atlas系统强制执行的特定建模行为(约束,索引等)。
4. 系统特定类型及含义
Atlas自带了一些预定义的系统类型。我们在前面的部分中看到了一个示例(DataSet)。在本节中,我们将看到更多这些类型并了解它们的重要性。
Referenceable:该类型表示可以使用名为qualifiedName的唯一属性搜索的所有实体。
Asset:该类型扩展了Referenceable并添加了名称,描述和所有者等属性。 Name是必需属性(isOptional = false),其他属性是可选的。
Referenceable和Asset的目的是为建模者提供在定义和查询自己类型的实体时强制一致性的方法。拥有这些固定的属性集允许应用程序和用户界面基于约定做出关于默认情况下它们可以期望类型的属性的假设。
Infrastructure:该类型继承自Asset,通常可用作基础结构元数据对象(如集群,主机等)的常见超类型。
DataSet:该类型继承自Referenceable。从概念上讲,它可以用于表示存储数据的类型。在Atlas中,hive表,hbase_tables等都是从DataSet扩展的类型。扩展DataSet的类型可以预期具有Schema,因为它们具有定义该数据集的属性的属性。对于例如hive_table中的columns属性。此外,扩展DataSet的类型实体参与数据转换,Atlas可以通过血缘)图了解到转换过程。
Process:该类型继承自Asset。从概念上讲,它可以用于表示任何数据转换操作。例如,将具有原始数据的配置单元表转换为存储某些聚合的另一个配置单元表的ETL过程可以是扩展Process类型的特定类型。流程类型有两个特定属性,即输入和输出。输入和输出都是DataSet实体的数组。因此,Process类型的实例可以使用这些输入和输出来捕获DataSet的血缘如何演变。
使用Atlas进行元数据管理之Type(类型)的更多相关文章
- 使用Atlas进行元数据管理之Atlas简介
背景:笔者和团队的小伙伴近期在进行数据治理/元数据管理方向的探索, 在接下来的系列文章中, 会陆续与读者们进行分享在此过程中踩过的坑和收获. 元数据管理系列文章: [0] - 使用Atlas进行元数据 ...
- 使用Atlas进行元数据管理之Glossary(术语)
背景:笔者和团队的小伙伴近期在进行数据治理/元数据管理方向的探索, 在接下来的系列文章中, 会陆续与读者们进行分享在此过程中踩过的坑和收获. 元数据管理系列文章: [0] - 使用Atlas进行元数据 ...
- 使用Atlas进行元数据管理之容错和高可用
1. 介绍 Apache Atlas使用各种系统并与之交互,为数据管理员提供元数据管理和数据血缘信息.通过适当地选择和配置这些依赖关系,可以使用Atlas实现高度的服务可用性.本文档介绍了Atlas中 ...
- 数据治理之元数据管理的利器——Atlas入门宝典
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程.作为Hadoop生态最紧密的元数据管理与发现工具,Atlas在其中扮演着重要的位置.但是其官方文档不是很丰富,也不够详细.所以整 ...
- Apache Atlas元数据管理从入门到实战(1)
一.前言 元数据管理是数据治理非常重要的一个方向,元数据的一致性,可追溯性,是实现数据治理非常重要的一个环节.传统数据情况下,有过多种相对成熟的元数据管理工具,而大数据时代,基于hadoop,最为 ...
- Oracle Enterprise Metadata Management (简称OEMM,Oracle元数据管理)12.1.3.0.1已经发布
在数据处理及数据仓库建设中,元数据管理是必不可少的,OEMM可以解决元数据管理过程中各种关键业务问题和技术挑战,其中包括如何元数据的统计信息,了解变更数据之后对下游的影响范围,而且OEMM站在业务的角 ...
- HDFS元数据管理机制
元数据管理概述 HDFS元数据,按类型分,主要包括以下几个部分: 1.文件.目录自身的属性信息,例如文件名,目录名,修改信息等. 2.文件记录的信息的存储相关的信息,例如存储块信息,分块情况,副本个数 ...
- 元数据管理的重要性 - xms
什么是元数据?引用百科的描述就是:元数据(Metadata),又称中介数据.中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息: 看起来有点抽象 ...
- 【收藏】关于元数据(Metadata)和元数据管理,这是我的见过最全的解读!
本文主要从元数据的定义.作用.元数据管理现状.管理标准和元数据管理功能等方面讲述了我对元数据(Metadata)和元数据管理的认知及理解. 元数据管理 一.元数据的定义 按照传统的定义,元数据(Met ...
随机推荐
- 不使用SpringBoot如何将原生Feign集成到Spring中来简化http调用
在微服务架构中,如果使用得是SpringCloud,那么只需要集成SpringFeign就可以了,SpringFeign可以很友好的帮我们进行服务请求,对象解析等工作. 然而SpingCloud是依赖 ...
- 函数strlen()和sizeof的区别
函数strlen()和sizeof的区别: #include<stdio.h> #include<stdlib.h> #include<string.h> #def ...
- C/C++反三角函数使用注意
最近写的东西用到了数学库中的acos函数,但是代码在运行的时候有时候会出莫名其妙的错误,比如返回值是个特别大的数. 最后在debug 的时候发现acos返回的数据很奇怪,但是传入的参数明明没有问题,可 ...
- 使用MongoDB在项目中实际运用
一.MongoDB,一个数据库,我们怎么去使用它呢?我们首先了解一下什么是MongoDb 官网的介绍是:MongoDB是专为可扩展性,高性能和高可用性而设计的数据库.它可以从单服务器部署扩展到大型.复 ...
- C# Array数组是引用类型
在C#中值类型都是由System.ValueType的直接派生类,System.ValueType本身又是直接从System.Object派生的.派生的意思是‘利用继承机制,新的类可以从已有的类中生出 ...
- 适配器模式(Adapter Pattern)
适配器模式概述 定义:将一个类的接口转化成客户希望的另一个接口,适配器模式让那些接口不兼容的类可以一起工作.别名(包装器[Wrapper]模式) 它属于创建型模式的成员,何为创建型模式:就是关注如何将 ...
- 浅谈CSS浮动属性
要介绍css的float浮动属性,就必须先了解一下标准文档流 标准文档流: 在没有css的干预下,块级元素独占一行,可以设置宽高,行内元素并排显示,宽高自动填充. HTML页面的标准文档流(默 ...
- git入门手册:git的基本安装,本地库管理,远程上传
前言: git是分布式的版本库控制系统,它能方便你将自己的代码寄存于远程服务器上,从而实现集体合作开发.git有GUI 图形界面,然而使用终端命令仍是主流.以下基于Ubuntu系统操作git(其方式也 ...
- idea配github
下面步骤的三个前提条件:安装git 安装idea 注册github账号 步骤一.绑定我的github账号与我的计算机 绑定我的github账号与我的计算机之后,便能很方便地上传或者更新我的代码,这需要 ...
- SQL优化--inner、left join替换in、not in、except
新系统上线,用户基数16万,各种查询timeout.打开砂锅问到底,直接看sql语句吧,都是泪呀,一大堆in\not in\except.这里总结一下,怎么替换掉in\not in\except. 1 ...