R语言 文本挖掘 tm包 使用
#清除内存空间
rm(list=ls())
#导入tm包
library(tm)
library(SnowballC)
#查看tm包的文档
#vignette("tm") ##1.Data Import 导入自带的路透社的20篇xml文档
#找到/texts/crude的目录,作为DirSource的输入,读取20篇xml文档
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML)) ##2.Data Export 将生成的语料库在磁盘上保存成多个纯文本文件
writeCorpus(reuters) ##3.Inspecting Corpora 查看语料库
#can use inspect(),print(),summary()
#由于是从xml读取过来,所以现在的corpus还是非常杂乱
inspect(reuters)
print(reuters)
summary(reuters) ##4.Transformations
#对于xml格式的文档用tm_map命令对语料库文件进行预处理,将其转为纯文本并去除多余空格,
#转换小写,去除常用词汇、合并异形同意词汇,如此才能得到类似txt文件的效果
#可以用inspect(reuters)查看此时的效果,明显好很多
reuters <- tm_map(reuters, as.PlainTextDocument)#将reuters转化为纯文本文件,去除标签
reuters <- tm_map(reuters, stripWhitespace)#去掉空白
reuters <- tm_map(reuters, tolower)#转换为小写
reuters <- tm_map(reuters, removeWords, stopwords("english"))#去停用词
#采用Porter's stemming 算法 提取词干
#Stem words in a text document using Porter's stemming algorithm
#install.packages("SnowballC")
tm_map(reuters, stemDocument) ##5.Creating Term-Document Matrices
#将处理后的语料库进行断字处理,生成词频权重矩阵(稀疏矩阵)也叫词汇文档矩阵
dtm <- DocumentTermMatrix(reuters)
#查看词汇文档矩阵
inspect(dtm[1:5, 100:105])
#Non-/sparse entries: 1990/22390 ---非0/是0
#Sparsity : 92% ---稀疏性 稀疏元素占全部元素的比例
#Maximal term length: 17 ---切词结果的字符最长那个的长度
#Weighting : term frequency (tf)
#如果需要考察多个文档中特有词汇的出现频率,可以手工生成字典,
#并将它作为生成矩阵的参数
d<-c("price","crude","oil","use")
inspect(DocumentTermMatrix(reuters,control=list(dictionary=d))) ##6.Operations on Term-Document Matrices
#找出次数超过5的词
findFreqTerms(dtm, 5)
#找出与‘opec’单词相关系数在0.8以上的词
findAssocs(dtm,"opec",0.8) #因为生成的矩阵是一个稀疏矩阵,再进行降维处理,之后转为标准数据框格式
#我们可以去掉某些出现频次太低的词。
dtm1<- removeSparseTerms(dtm, sparse=0.6)
inspect(dtm1)
data <- as.data.frame(inspect(dtm1)) #再之后就可以利用R语言中任何工具加以研究了,下面用层次聚类试试看
#先进行标准化处理,再生成距离矩阵,再用层次聚类
data.scale <- scale(data)
d <- dist(data.scale, method = "euclidean")
fit <- hclust(d, method="ward.D")
#绘制聚类图
#可以看到在20个文档中,489号和502号聚成一类,与其它文档区别较大。
plot(fit,main ="文件聚类分析") #主成分分析
ozMat <- TermDocumentMatrix(makeChunks(reuters, 50),
list(weighting = weightBin))
k <- princomp(as.matrix(ozMat), features = 2)
screeplot(k,npcs=6,type='lines')
windows()
biplot(k)
R语言 文本挖掘 tm包 使用的更多相关文章
- R语言︱文本挖掘——jiabaR包与分词向量化的simhash算法(与word2vec简单比较)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比 ...
- R语言︱文本挖掘套餐包之——XML+SnowballC+tm包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言︱文本挖掘套餐包之--XML+tm+Sn ...
- R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:与前面的RsowballC分词不同的 ...
- R语言·文本挖掘︱Rwordseg/rJava两包的安装(安到吐血)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言·文本挖掘︱Rwordseg/rJava ...
- R语言中文分词包jiebaR
R语言中文分词包jiebaR R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据 ...
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算 ...
- 使用R语言的RTCGA包获取TCGA数据--转载
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因 ...
- R语言文本挖掘+词云显示(jiebaR包+wordcloud2包)
利用2018年政府工作报告的例子向大家展示一下R语言如何进行文本挖掘的~用到的包有jiebaR和wordcloud2. 1.安装并加载jiebaR install.packages("jie ...
随机推荐
- c# excel print 打印 将所有列调整为一页
excel有时候列数比较多,行数也比较多,转换成xps文档的时候,一般是通过打印来实现. 由于打印的范围限制,所以会出现本来在一行的数据,由于列数比较多,溢出范围,被打印到两页了. 为解决这个问题,需 ...
- C# 语法学习整理
1.协变与逆变的概念 文章地址:https://segmentfault.com/a/1190000007005115 **************************************** ...
- AutoDesk Forge 获取令牌认证
创建应用程序 在开始使用Forge Platform之前,您需要设置一个应用程序并获取您的客户端ID和密码. 步骤1:登录Dev Portal 去开发门户网站:https://developer.au ...
- 浅谈JavaScript的事件(事件处理程序)
事件就是用户或者浏览器自身执行的某种动作.诸如click.load和mouseover,都是事件的名字.而响应某个事件的函数就叫事件处理程序.事件处理程序的名字以"on"开头,比如 ...
- python+xlsxwriter+PIL自动压图贴图到Excel小工具
一.环境 windows10/mac + python3.6 python第三方库 xlsxwriter.PIL.argparse 二.需求 1.运行每条测试case成功与否都需要把截图放在img文件 ...
- 洛谷 [P1963] [NOI2009] 变换序列
这是一道二分图匹配的题 先%dalao博客 建图并没有什么难的,但是关键在于如何使字典序最小. 一个很显然的想法是先求出一个完美匹配,然后从x集合的第一个元素开始,如果该元素匹配的较小的一个,那么继续 ...
- 济南清北学堂游记 Day 0.
(摄于千佛山山顶,济南城区风光) 看似稳得一比,实则慌如老狗= = 我可能是报到最早的且实力最弱的一只. 早晨六点二十被从床上拉起来,然后在火车站附近匆忙吃了点东西就坐火车去济南了. 路途不算远,大概 ...
- c# Nlog 非xml cs方法配置
public static void InitLog(TargetWithLayout target = null, string level = "Debug", string ...
- PYTHON3 RE正则表达:
The special characters are: "." Matches any character except a newline. "^" Matc ...
- Python编程软件的安装与使用——Windows、Linux和Mac
Python版本:3.6.2 操作系统:Windows 作者:SmallWZQ 最近,有读者透露:Python软件如何安装?为什么自己安装的软件会有各种"奇怪"的问题?据此,本 ...