《Language Implementation Patterns》之 增强解析模式
上一章节讲述了基本的语言解析模式,LL(k)足以应付大多数的任务,但是对一些复杂的语言仍然显得不足,已付出更多的复杂度、和运行时效率为代价,我们可以得到能力更强的Parser。
- Pattern 5 :回朔解析器(Backtracking Parser),这种解析器晖尝试规则的每个分支来进行匹配,与LL(k)比较的话,Backtracking Parser支持任意长度的预读token,这种Parser的能力极强,运行时的代价可能会很大。
- Pattern 6 :Memoizing Parser, 这中parser通过一些内存消耗来调高parse效率;
- Pattern 7 : Predicated Parser, 允许我们通过boolean表达式来调整parser的控制流程,前面所讲的任何一中模式都可以通过Predicate(谓词)来扩展。
这几个模式非常的繁琐,一般通过工具来生成,但是弄清楚原理才能理解工具所生成的Parser。
为什么需要回朔
有些语言通过LL(k)不能实现Parser,比如下面的C++语句:
void bar() {...}
void bar();
对应的语法规则类似:
function : def | decl ;
def :functionHead '{' body '}' ;
decl : functionHead ';'
functionHead : ...; //E.g., "int * (*foo)(int *f[], float)"
由于functionHead的长度是不可预料的,所有LL(k)在这里不适用,只有每个选择项都尝试Parse才能得到正确结果:
void function() {
if ( «speculatively-match-def» ) def();
else if ( «speculatively-match-decl» ) decl();
else throw new RecognitionError("expecting function");
}
上面这个Parser有一个微妙的地方,if-else里面对规则选项的安排顺序,决定了各选项的优先级。这个特性可以用来解决C++语言一些模糊的规则,比如T(a)既可以是一个函数声明也可以是一个表达式,c++参考手册说明应该“函数声明”优先。
回朔有两个明显的缺点:1、调试比较困难,回朔的路径很多,层次很深;2、速度慢。
在Parser找到匹配的规则之前,同一个子规则可能被同一个输入匹配多次。比如上文所说的函数定义和函数声明,二者开始的部分完全相同,回朔法对functionHead用同样的输入发生两次匹配。假如在尝试规则def的时候能够记住functionHead匹配情况,那么对decl的尝试就能更快,Pattern 6 Memoizing Parser解释了这个机制。
上下文相关文法
上面的parser设计都是用来对付上下文无关语言的,“上下文无关”的意思规则的匹配不依赖与具体的语句上下文。应该说,大部分编程语言都是上下文无关的,但是这些语言的某些规则却存在“上下文相关性”。
看一个例子,T(6)在C++里面可能是一个函数调用,也可能是一个对象构造,取决于T是一个函数还是一个类名。
expr: INTEGER // integer literal
| ID '(' expr ')' // function call; AMBIGUOUS WITH NEXT ALT
| ID '(' expr ')' // constructor-style typecast
;
这个语法规则描述了函数与对象构造,但是如果按照之前的模式来编写Parser,第三个选项永远不会被匹配。
为了让上下文无关的Parser能够处理这样的语言,需要对规则选项增加谓词(Predicate)。谓词是一个运行时的boolean条件,当条件为真时,某个选项有效,Parser方法应该这样编写:
void expr() {
if ( LA(1)==INTEGER) match(INTEGER);
else if ( LA(1)==ID && isFunction(LT(1).text) ) «match-function-call»
else if ( LA(1)==ID && isType(LT(1).text) ) «match-typecast»
else «error»
}
Pattern 5 Backtracking Parser
实现回朔Parser需要一种更复杂结构,这一节描述了如何实现一个Backtracking Parser。
这种Parser的规则对应方法模板如下:
public void «rule»() throws RecognitionException {
if ( speculate_«alt1»() ) { // attempt alt 1
«match-alt1 »
}
else if ( speculate_«alt2»() ) { // attempt alt 2
«match-alt2 »
}
...
else if ( speculate_«altN»() ) { // attempt alt N
«match-altN »
}
// must be an error; no alternatives matched
else throw new NoViableException("expecting «rule»")
}
speculate_Alt方首先为token流做一个标记,然后尝试匹配,最后无论匹配是否成功都将token流回朔到初始位置:
public boolean speculate_«alt»() {
boolean success = true;
mark(); // mark this spot in input so we can rewind
try { «match-alt» } // attempt to match the alternative
catch (RecognitionException e) { success = false; }
release(); // either way, rewind to where we were before attempt return success;
}
token流的mark()操作,基于一个栈结构,进入更深一层时push一个mark,回退时pop一个mark。
Pattern 6 Memoizing Parser
又被称之为Packrat parser(具体意思不清楚),避免对同一个规则、同一输入做重复的匹配尝试。
以下面的语法为例:
s : expr '!' // assume backtracking parser tries this alternative
| expr ';' // and then this one
;
expr : ... ; // match input such as "(3+4)"
在解析语句(3+4);的时候,先使用规则s的第一个选项,在最后一个符号;会失败,导致回朔;然后使用s的第二个选项,又要冲洗匹配一次expr。如果在第一个选项匹配之后,能够知道expr是否曾经匹配成功,如果成功在那个位置,那么在第二个选项的匹配时,无论如何expr可以直接跳过。
为了记住尝试匹配的中间结果,需要一个字典型的结构{rule:condition},condition记录了一个rule的匹配状态,可能的值:unknow,failed,succeeded。如果是java语言实现的parser,那么unknow用默认null表示,failed用负数表示,succeeded用0或正数来表示(同时可以表示匹配的位置),parser方法的模板如下:
Map<Integer, Integer> «rule»_memo = new HashMap<Integer, Integer>();
public void «rule»() throws RecognitionException {
boolean failed = false;
int startTokenIndex = index();
if ( isSpeculating() && alreadyParsedRule(«rule»_memo) ) return;
// must not have previously parsed rule at token index; parse it
try { _«rule»(); }
catch (RecognitionException re) { failed = true; throw re; }
finally {
// succeed or fail, we must record result if backtracking
if (isSpeculating())
memoize(«rule»_memo, startTokenIndex, failed);
}
}
原来的匹配方法改名为 _«rule»(加了一个下划线),而«rule»()加上了记录中间匹配结果的逻辑,在尝试匹配结束后,执行正式的匹配的时候,就可以clear这个中间结果了。
这个方法是对每个rule简历一个map来存储中间匹配位置,确实在一次尝试里面,一个rule可以发生多次匹配。在clear的时候,需要清楚所有rule的map。
Pattern 7 Predicated Parser
语法谓词(semantic predicate)用来帮助Parser做决策,最常见的情况,parser需要使用符号表里面的信息来引导接下来的解析。
下面是加了谓词的解析方法:
public void «rule»() throws RecognitionException {
if ( «lookahead-test-alt1» && «pred1» ) { // attempt alt 1
«match-alt1 »
}
else if ( «lookahead-test-alt2» && «pred2» ) { // attempt alt 2
«match-alt2 »
}
...
else if ( «lookahead-test-altN» && «predN» ) { // attempt alt N
«match-altN »
}
// must be an error; no alternatives matched
else throw new NoViableException("expecting «rule»")
}
以上文C++函数调用&对象构造的问题为例,与方法规则可以如下定义:
expr: INTEGER // integer literal
| {isFuncName(LT(1).getText())}? ID '(' expr ')' // function call; AMBIGUOUS WITH NEXT ALT
| {isTypeName(LT(1).getText())}? ID '(' expr ')' // constructor-style typecast
;
LT(1)代表往前预读的第一个token。
《Language Implementation Patterns》之 增强解析模式的更多相关文章
- 《Language Implementation Patterns》之 解释器
前面讲述了如何验证语句,这章讲述如何构建一个解释器来执行语句,解释器有两种,高级解释器直接执行语句源码或AST这样的中间结构,低级解释器执行执行字节码(更接近机器指令的形式). 高级解释器比较适合DS ...
- 《Language Implementation Patterns》之 符号表
前面的章节我们学会了如何解析语言.构建AST,如何访问重写AST,有了这些基础,我们可以开始进行"语义分析"了. 在分析语义的一个基本方面是要追踪"符号",符号 ...
- 《Language Implementation Patterns》之访问&重写语法树
每个编程的人都学习过树遍历算法,但是AST的遍历并不是开始想象的那么简单.有几个因素会影响遍历算法:1)是否拥有节点的源码:2)是否子节点的访问方式是统一的:3)ast是homogeneous或het ...
- 《Language Implementation Patterns》之 构建语法树
如果要解释执行或转换一段语言,那么就无法在识别语法规则的同时达到目标,只有那些简单的,比如将wiki markup转换成html的功能,可以通过一遍解析来完成,这种应用叫做 syntax-direct ...
- 《Language Implementation Patterns》之 强类型规则
语句的语义取决于其语法结构和相关符号:前者说明了了要"做什么",后者说明了操作"什么对象".所以即使语法结构正确的,如果被操作的对象不合法,语句也是不合法的.语 ...
- 《Language Implementation Patterns》之 数据聚合符号表
本章学习一种新的作用域,叫做数据聚合作用域(data aggregate scope),和其他作用域一样包含符号,并在scope tree里面占据一个位置. 区别在于:作用域之外的代码能够通过一种特殊 ...
- 《Language Implementation Patterns》之 语言翻译器
语言翻译器可以从一种计算机语言翻译成另外一种语言,比如一种DSL的标量乘法axb翻译成java就变成a*b:如果DSL里面有矩阵运算,就需要翻译成for循环.翻译器需要完全理解输入语言的所有结构,并选 ...
- 【BZOJ】【1717】【USACO 2006 Dec】Milk Patterns产奶的模式
后缀数组 o(︶︿︶)o 唉傻逼了一下,忘了把后缀数组的字典范围改回20001,直接21交了上去,白白RE了两发……sigh 既然要找出现了K次的子串嘛,那当然要用后缀数组了>_>(因为我 ...
- BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 [后缀数组]
1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: ...
随机推荐
- Java双等号,Equals(),HashCode()小结
默认情况 - 双等号==,比较的是内存地址. - equals(),默认比较的是内存地址. - hashCode(),默认返回的是object的内存地址. String中方法改写的情况 经常会遇到需要 ...
- 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)
[BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...
- 【CJOJ1494】【洛谷2756】飞行员配对方案问题
题面 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1 ...
- Angular和Vue.js 深度对比
Vue.js 是开源的 JavaScript 框架,能够帮助开发者构建出美观的 Web 界面.当和其它网络工具配合使用时,Vue.js 的优秀功能会得到大大加强.如今,已有许多开发人员开始使用 Vue ...
- ssm实现分页查询
ssm整合实现分页查询 一.通过limit查询语句实现分页,并展示 1.mapper.xml配置 <select id="selectUsersByPage" paramet ...
- Solidity constant view pure关键字的区别与联系
在Solidity中constant.view.pure三个函数修饰词的作用是告诉编译器,函数不改变/不读取状态变量,这样函数执行就可以不消耗gas了(是完全不消耗!),因为不需要矿工来验证.所以用好 ...
- New Windows 10 SDK - Multi-instance UWP apps
概述 前面一篇 About Windows 10 SDK Preview Build 17110 中,我们简单介绍了 Multi-instance UWP Apps,今天结合开发过程详细讲解一下. 在 ...
- python编程中的if __name__ == 'main与windows中使用多进程
if __name__ == 'main 一个python的文件有两种使用的方法,第一是直接作为程序执行,第二是import到其他的python程序中被调用(模块重用)执行. 因此if __name_ ...
- Mysql语句的执行过程
当你希望MySQL能够以更高的性能运行查询时,最好的办法是弄清楚MySQL是如何优化和执行查询.<高性能MySQL> MySQL客户端与服务器端的通信特点 客户端与服务器之间是半双工通信, ...
- python安装第三方库
在编写爬虫程序时发现unsolved import 一时不解,以为是ide出问题了,其实是没有安装第三方库导致的. 于是到https://pypi.python.org/pypi/requests/去 ...