nyoj n-1位数
n-1位数
- 描述
-
已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的数。
- 输入
- 第一行为M,表示测试数据组数。
接下来M行,每行包含一个测试数据。 - 输出
- 输出M行,每行为对应行的n-1位数(忽略前缀0)。如果除了最高位外,其余位都为0,则输出0。
-
/*#include "stdio.h"
int main()
{
int m,n;
scanf("%d",&m);
while(m--)
{
scanf("%d",&n);
if(n<=10&&n>1000000)
return 0;
if(n>10&&n<100)
n%=10;
else if(n<1000)
n%=100;
else if(n<10000)
n%=1000;
else if(n<100000)
n%=10000;
else if(n<=1000000)
n%=100000;
printf("%d\n",n);
}
return 0;
}*/
#include <iostream>
using namespace std;int main()
{
int m;
cin>>m;
while(m--)
{
int w;
cin>>w;
if(w<10||w>1000000)
return 0;
if(w<=100&&w>=10)
{
w%=10;
cout<<w<<endl;
}
if(w<=1000&&w>=100)
{
w%=100;
cout<<w<<endl;
}
if(w<=10000&&w>=1000)
{
w%=1000;
cout<<w<<endl;
}
if(w<100000&&w>=10000)
{
w%=10000;
cout<<w<<endl;
}
if(w<=1000000&&w>=100000)
{
w%=100000;
cout<<w<<endl;
}
if(w<=10000000&&w>=1000000)
{
w%=1000000;
cout<<w<<endl;
}
}
return 0;
}
nyoj n-1位数的更多相关文章
- nyoj 96 n-1位数(处理前导 0 的情况)
n-1位数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则 ...
- nyoj 96 n-1位数(处理前导 0 的情况)(string)
n-1位数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则 ...
- nyoj 69-数的长度 (log10(),计算数的位数)
69-数的长度 内存限制:64MB 时间限制:3000ms 特判: No 通过数:10 提交数:13 难度:1 题目描述: N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)····· ...
- nyoj 96-n-1位数 (strlen, atoi, ceil)
96-n-1位数 内存限制:64MB 时间限制:3000ms 特判: No 通过数:30 提交数:47 难度:1 题目描述: 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2) ...
- NYOJ题目96 n-1位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAJgCAIAAADpjVkvAAAgAElEQVR4nO3du04jS/gv7H0T5FwIsa ...
- NYOJ 46-最少乘法次数(数论)
题目地址:pid=46">NYOJ 46 思路:能够化成二进制来求解.结果是最高位的位数-1+最高位后面1的个数.比如:对于3.它的二进制代码为11,就是用这个最高位(2-1)加上后面 ...
- NYOJ 45 棋盘覆盖 模拟+高精度
题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...
- nyoj 0269 VF(dp)
nyoj 0269 VF 意思大致为从1-10^9数中找到位数和为s的个数 分析:利用动态规划思想,一位一位的考虑,和s的范围为1-81 状态定义:dp[i][j] = 当前所有i位数的和为j的个数 ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
随机推荐
- 【THUWC 2017】在美妙的数学王国中畅游
数学王国里有n座城市,每座城市有三个参数\(f\),\(a\),\(b\),一个智商为\(x\)的人经过一座城市的获益\(f(x)\)是 若\(f=1\),则\(f(x)=\sin(ax+b)\): ...
- [BZOJ4195] [NOI2015] 程序自动分析 (并查集)
Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或x ...
- Notepad++ JSON关键字自动提示
Notepad++关键字自动提示 2017-08-31 目录 1 插件安装2 往JSON中加关键字3 智能提示 最近接口测试自动化框架的的case是json格式,用例的json的格式是固定的,定义专门 ...
- 找出k个数相加得n的所有组合
Find all possible combinations of k positive numbers that add up to a number n,each combination shou ...
- [转][RabbitMQ+Python入门经典] 兔子和兔子窝
[转][RabbitMQ+Python入门经典] 兔子和兔子窝 http://blog.csdn.net/linvo/article/details/5750987 RabbitMQ作为一个工业级的消 ...
- eclipse的常用快捷键和一些基本设置!!!
对于一些比较繁琐简单的代码没必要天天敲,为了提高效率,还是需要使用一些快捷键的:下面就说了一些比较基本的. alt+shift+s+c 无参构造器 alt+shift+s+O 有参构造器 ...
- ELK重难点总结和整体优化配置
本文收录在Linux运维企业架构实战系列 做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~ 一.elk 实用知识点总结 1.编码转换问题(主要就是中文乱码) (1)input 中的cod ...
- JS离开页面 弹窗
function bindDOMEvents() { $(document).keydown(function (e) { var key = e.which || e.keyCode; if (ke ...
- 在CentOS7中安装.Net Core2.0 SDK
1.sudo yum install libunwind libicu(安装libicu依赖) 2.curl -sSL -o dotnet.tar.gz https://go.microsoft.co ...
- 需求分析---NABCD
N(Need,需求) 我们的产品未来天气,是为了解决不爱看天气预报的群众开发一款类似备忘录式的天气预报软件.很多人认为今天天气很好,明天肯定不会差,但是风云忽变,可能明天就降大雨,所以就忽略了带伞, ...