Algorithm --> 最长回文子串
1、中心扩展
中心扩展就是把给定的字符串的每一个字母当做中心,向两边扩展,这样来找最长的子回文串。算法复杂度为O(N^2)。
但是要考虑两种情况:
1、像aba,这样长度为奇数。
string findLongestPalindrome(string &s)
{
const int length=s.size();
int maxlength=;
int start; for(int i=;i<length;i++)//长度为奇数
{
int j=i-,k=i+;
while(j>=&&k<length&&s.at(j)==s.at(k))
{
if(k-j+>maxlength)
{
maxlength=k-j+;
start=j;
}
j--;
k++;
}
} for(int i=;i<length;i++)//长度为偶数
{
int j=i,k=i+;
while(j>=&&k<length&&s.at(j)==s.at(k))
{
if(k-j+>maxlength)
{
maxlength=k-j+;
start=j;
}
j--;
k++;
}
}
if(maxlength>)
return s.substr(start,maxlength);
return NULL;
}
c[i, j] = 1表示子串s[i..j]为回文子串,空间和算法复杂度也是O(N^2)。那么就有递推式:c[i,j]={ c[i+,j−], if s[i]=s[j]
, if s[i]≠s[j]
递推式表示在s[i] = s[j]情况下,如果s[i+1..j-1]是回文子串,则s[i..j]也是回文子串;如果s[i+1..j-1]不是回文子串,则s[i..j]也不是回文子串。
初始状态:
c[i][i] =
c[i][i+] = if s[i] == s[i+]
上述式子表示单个字符、两个字符均是回文串[j]
int longestPald(char *str) {
int len = strlen(str);
int c[maxLen][maxLen];
int i,j;
int longest = ;
assert(str != NULL);
if(len == ) {
return ;
}
//initialization
for(i = ; i < len; i++) {
c[i][i] = ;
if(str[i] == str[i+])
c[i][i+] = ;
}
for(i = ; i < len; i++) {
for(j = i+; j <= len; j++) {
if(str[i] == str[j]) {
c[i][j] = c[i+][j-];
//find longest palindrome substring
if(c[i][j]) {
int n = j - i + ;
if(longest < n)
longest = n;
}
} else {
c[i][j] = ;
}
}
}
return longest;
}
3、暴力法
最容易想到的就是暴力破解,求出每一个子串,之后判断是不是回文,找到最长的那个。
求每一个子串时间复杂度O(N^2),判断子串是不是回文O(N),两者是相乘关系,所以时间复杂度为O(N^3)。
string findLongestPalindrome(string &s)
{
int length=s.size();//字符串长度
int maxlength=;//最长回文字符串长度
int start;//最长回文字符串起始地址
for(int i=;i<length;i++)//起始地址
for(int j=i+;j<length;j++)//结束地址
{
int tmp1,tmp2;
for(tmp1=i,tmp2=j;tmp1<tmp2;tmp1++,tmp2--)//判断是不是回文
{
if(s.at(tmp1)!=s.at(tmp2))
break;
}
if(tmp1>=tmp2&&j-i>maxlength)
{
maxlength=j-i+;
start=i;
}
}
if(maxlength>)
return s.substr(start,maxlength);//求子串
return NULL;
}
4、Manacher法(待续)
Algorithm --> 最长回文子串的更多相关文章
- Manacher's algorithm: 最长回文子串算法
Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abcc ...
- 【转】最长回文子串的O(n)的Manacher算法
Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- 后缀数组 - 求最长回文子串 + 模板题 --- ural 1297
1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a ...
- 最长回文子串(Manacher算法)
回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...
- 【回文字符串】 最长回文子串O(N) Manacher算法
原理讲的清晰:Manacher's ALGORITHM: O(n)时间求字符串的最长回文子串 注意: ①动态生命P[]和newStr数组后,不要忘记delete[] //其实这是基本的编码习惯 ②最终 ...
- URAL 1297 Palindrome 最长回文子串
POJ上的,ZOJ上的OJ的最长回文子串数据量太大,用后缀数组的方法非常吃力,所以只能挑个数据量小点的试下,真要做可能还是得用manacher.贴一下代码 两个小错,一个是没弄懂string类的sub ...
- 51nod1089最长回文子串V2
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字 ...
- Palindrome - POJ 3974 (最长回文子串,Manacher模板)
题意:就是求一个串的最长回文子串....输出长度. 直接上代码吧,没什么好分析的了. 代码如下: ================================================= ...
随机推荐
- u盘安装ubuntu10.04 、11.04 server
10.04 先将 ubuntu server 的 iso 放到优盘上,然后在提示无法找到光驱时,按 alt+f2 打开一个新的 console 窗口,将 iso mount 上,具体操作如下: ls ...
- 深入理解StrongReference,SoftReference, WeakReference和PhantomReference
Java 中一共有 4 种类型的引用 : StrongReference. SoftReference. WeakReference 以及 PhantomReference (传说中的幽灵引用 呵呵) ...
- jvm类加载器和双亲委派模型
类加载器按照层次,从顶层到底层,分为以下三种: (1)启动类加载器(Bootstrap ClassLoader) 这个类加载器负责将存放在JAVA_HOME/lib下的,或者被-Xbootcla ...
- windows2003服务器系统日志:查看电脑远程登录记录
控制面板>>管理工具>>事件查看器>>选择安全性再点工具栏目中查看>>筛选>>事件ID填528进行过滤,时间你看是多久,双击查看之后就可以找 ...
- 使用串口下载vxworks映象的方法
使用串口下载vxworks映象的方法 由于坛子里这方面的可行性文章比较少,不时有一些网友在询问这方面的问题,再加上通过这种方法可以调试网络驱动,所以我花了一点时间把整个下载过程试了一下. 1.配置co ...
- Java引用变量的类型
Java引用变量的类型 1.编译时类型:由声明该变量时使用的类型决定 2.运行时类型:由实际赋给该变量的对象决定 如果编译时类型和运行时类型不一致,就可能出现多态性
- E: 未发现软件包 install_flash_player_11_linux.x86_64.tar.gz
1 错误描述 youhaidong@youhaidong:~$ sudo apt-get install install_flash_player_11_linux.x86_64.tar.gz 正在读 ...
- Unity开发之存档和读档的三种实现方式
此文内容源自siki学院视频,仅供学习!视频链接地址:http://www.sikiedu.com/course/129 工程使用Unity 2017.3.0f3 (64-bit) 老司机读博客,了解 ...
- Java 第一章 初识Java
第一章笔记 什么是计算机程序:算机为完成某些功能生产的一系列有序指令集合 Java技术包括: java SE:标准版 java EE:企业版 Java ME:移动版 开发Java程序步骤:1.编写 2 ...
- 机器学习相关的tutorial
1. MRF 马尔可夫随机场 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/ 从MRF,讲到Gibbs分 ...