Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ AN; 1 ≤ BN; AB), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5
分析:有人说叫闭包传递。这题就是用一种类似于floyd的算法,
开始时,如果a胜b则由a到b连一条边。这样所有a能走到的点都是排名在a以后的。
所有能走到a的点都是排名在a以前的。用floyd,求出每个点能到达的点。
如果有一个点,排名在它之前的和排名在它之后的点之和为n-1,那么它的排名就是确定的。
#include<iostream>
using namespace std ;
int main()
{
int N,M,a,b;
cin>>N>>M;
int aa[110][110]={0};
while(M--)
{
cin>>a>>b;
aa[a][b]=1;
} for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
for(int k=1;k<=N;k++)
{
if(aa[j][i]&&aa[i][k])
aa[j][k]=1;
}
int ans=0;
for(int i=1;i<=N;i++)
{
int tmp=0;
for(int j=1;j<=N;j++)
tmp+=aa[i][j]+aa[j][i];
if(tmp==N-1)ans++; } cout<<ans<<endl;
return 0;
}

  

poj-3660-cows contest(不懂待定)的更多相关文章

  1. POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包)

    POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包) Description N (1 ≤ N ...

  2. POJ 3660 Cow Contest

    题目链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  4. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. POJ - 3660 Cow Contest 传递闭包floyed算法

    Cow Contest POJ - 3660 :http://poj.org/problem?id=3660   参考:https://www.cnblogs.com/kuangbin/p/31408 ...

  6. poj 3660 Cow Contest(传递闭包 Floyd)

    链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...

  7. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  8. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

  9. POJ 3660 Cow Contest (闭包传递)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7690   Accepted: 4288 Descr ...

  10. POJ 3660 Cow Contest (floyd求联通关系)

    Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...

随机推荐

  1. linux mysql重启命令

    1.通过rpm包安装的MySQL 1 2 service mysqld restart /etc/inint.d/mysqld start 2.从源码包安装的MySQL 1 2 3 4 // Linu ...

  2. shell脚本基础 循环机构

    循环结构 for循环格式一格式:for 变量 in 值1 值2 ........(值不一定是数字,可以是命令或者其他的)do 命令done [root@ceshiji ~]# vim a.sh #!/ ...

  3. UnicodeDecodeError: 'utf-8' codec can't decode byte 0xce in position 52: invalid continuation byte

    代码: df_w = pd.read_table( r'C:\Users\lab\Desktop\web_list_n.txt', sep=',', header=None) 当我用pandas的re ...

  4. HighCharts之2D数值带有百分数的面积图

    HighCharts之2D数值带有百分数的面积图 1.HighCharts之2D数值带有百分数的面积图源码 AreaPercentage.html: <!DOCTYPE html> < ...

  5. mpeg文件格式分析

    MPEG-1流比特层次结构分析总结 1.简要介绍Mpeg 2.Mpeg-1数据流分析 2.1视频序列层(VideoStream) 2.2画面组层(GOP) 2.3画面层(Pictures) 2.4片层 ...

  6. JDBC连接池-自定义连接池

    JDBC连接池 java JDBC连接中用到Connection   在每次对数据进行增删查改 都要 开启  .关闭  ,在实例开发项目中 ,浪费了很大的资源 ,以下是之前连接JDBC的案例 pack ...

  7. iOS - Mac 常用快捷键

    前言 可以按下组合键来实现通常需要鼠标.触控板或其他输入设备才能完成的操作. 要使用键盘快捷键,需按住一个或多个修饰键,同时按快捷键的最后一个键.例如,要使用快捷键 Command-C(拷贝),请按住 ...

  8. 【原】Spring Boot 配置swagger2没有文档解决方案

    @Bean public Docket customImplementation(){ return new Docket(DocumentationType.SWAGGER_2) .select() ...

  9. FFT [TPLY]

    FFT [TPLY] 题目链接 https://www.luogu.org/problemnew/show/1919 https://www.luogu.org/problemnew/show/380 ...

  10. Gradle下载 Jar 包

    使用此方法下载Jar包的前提是已经配置好了Gradle的环境了,配置好的标志是在终端输入gradle不提示command not found. 1. 编写build.gradle文件代码: apply ...