sparse_softmax_cross_entropy_with_logits
sparse_softmax_cross_entropy_with_logits
觉得有用的话,欢迎一起讨论相互学习~




定义
sparse_softmax_cross_entropy_with_logits(_sentinel=None, # pylint: disable=invalid-name
labels=None, logits=None,
name=None):
说明
- 此函数大致与tf_nn_softmax_cross_entropy_with_logits的计算方式相同,
- 适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象
- 但是在对于labels的处理上有不同之处,labels从shape来说此函数要求shape为[batch_size],labels[i]是[0,num_classes)的一个索引, type为int32或int64,即labels限定了是一个一阶tensor,并且取值范围只能在分类数之内,表示一个对象只能属于一个类别
参数
_sentinel:本质上是不用的参数,不用填
logits:shape为[batch_size,num_classes],type为float32或float64
name:操作的名字,可填可不填
示例代码
import tensorflow as tf
input_data = tf.Variable([[0.2, 0.1, 0.9], [0.3, 0.4, 0.6]], dtype=tf.float32)
output = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=input_data, labels=[0, 2])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
# [ 1.36573195 0.93983102]
sparse_softmax_cross_entropy_with_logits的更多相关文章
- tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数
函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) ...
- tf中softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits
其实这两个都是计算交叉熵,只是输入数据不同. #sparse 稀疏的.稀少的 word_labels = tf.constant([2,0]) predict_logits = tf.constant ...
- ValueError: Only call `sparse_softmax_cross_entropy_with_logits` with named a
第五章中完整的训练MNIST数据的神经网络模型的程序代码中,直接运行程序的话会遇到以下的错误. 把下面的这行代码 # 计算交叉熵及其平均值 cross_entropy = tf.nn.sparse_s ...
- tensorflow 中 softmax_cross_entropy_with_logits 与 sparse_softmax_cross_entropy_with_logits 的区别
http://stackoverflow.com/questions/37312421/tensorflow-whats-the-difference-between-sparse-softmax-c ...
- 【tensorflow】softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits
softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits都是对最后的预测结果进行softmax然后求交叉熵 ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- Tensorflow ——神经网络
Training Data Eval: Num examples: 55000 Num correct: 52015 Precision @ 1: 0.9457Validation Data Eval ...
- Tensorflow的CNN教程解析
之前的博客我们已经对RNN模型有了个粗略的了解.作为一个时序性模型,RNN的强大不需要我在这里重复了.今天,让我们来看看除了RNN外另一个特殊的,同时也是广为人知的强大的神经网络模型,即CNN模型.今 ...
- Tensorflow学习笔记---0--TensorBoard
运行mnist_with_summaries学习TensorBoard时,由于需要GPU支持,运行窗口报错:Couldn't open CUDA library cupti64_80.dll 解决办法 ...
随机推荐
- Flask-SQLAlchemy
Flask-SQLAlchemy SQLAlchemy 一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言 ...
- PHP面向对象编程基本原则
首先祝大家节日快乐!!! 额,不知道你们剁手没,小梦是没有!整整已经错过了第九个年头! 小伙伴是不是有一种感觉,PHP入门的时候简直爱不释手,总是把 "PHP是世界上最好的语言" ...
- BZOJ 3195: [Jxoi2012]奇怪的道路(状压dp)
f[i][j][s]表示当前处理第i个点,前i-1个点已连j条边,第i个点开始k个点的奇偶性状态. #include<cstring>#include<algorithm>#i ...
- 2017ecjtu-summer training #6 Gym 100952D
D. Time to go back time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Python系列之入门篇——HDFS
Python系列之入门篇--HDFS 简介 HDFS (Hadoop Distributed File System) Hadoop分布式文件系统,具有高容错性,适合部署在廉价的机器上.Python ...
- c++(排序二叉树线索化)
前面我们谈到了排序二叉树,还没有熟悉的同学可以看一下这个,二叉树基本操作.二叉树插入.二叉树删除1.删除2.删除3.但是排序二叉树也不是没有缺点,比如说,如果我们想在排序二叉树中删除一段数据的节点怎么 ...
- python数据类型(一)
1.数据类型 python中数有四种类型:整数.长整数.浮点数和复数. 整数, 如 1 长整数 是比较大的整数 浮点数 如 1.23.3E-2 复数 如 1 + 2j. 1.1 + 2.2j 2. 自 ...
- 冒泡排序和选择排序-java
冒泡排序 假设有一数组int [] arr = {9,5,4,10,2};原理是第一个元素和第二个比较,如果前者大于后者便交换位置,然后第二个元素和第三个元素比较,如果前者大于后者便交换位置.以此类 ...
- tp路由+伪静态+去掉index.php
浏览:10536 发布日期:2013/10/08 分类:技术分享 关键字: 路由 伪静态 去掉index.php 之前一个网友说能不能达到这样的效果,www.olcms.com/news/id.htm ...
- Angular 4+ HttpClient
个人博客迁移至 http://www.sulishibaobei.com 处: 这篇,算是上一篇Angular 4+ Http的后续: Angular 4.3.0-rc.0 版本已经发布