Description

You surely have never heard of this new planet surface exploration scheme, as it is being carried out in a project with utmost secrecy. The scheme is expected to cut costs of conventional rover-type mobile explorers considerably, using projected-type equipment nicknamed "observation bullets".

Bullets do not have any active mobile abilities of their own, which is the main reason of their cost-efficiency. Each of the bullets, after being shot out on a launcher given its initial velocity, makes a parabolic trajectory until it touches down. It bounces on the surface and makes another parabolic trajectory. This will be repeated virtually infinitely.

We want each of the bullets to bounce precisely at the respective spot of interest on the planet surface, adjusting its initial velocity. A variety of sensors in the bullet can gather valuable data at this instant of bounce, and send them to the observation base. Although this may sound like a conventional target shooting practice, there are several issues that make the problem more difficult.

  • There may be some obstacles between the launcher and the target spot. The obstacles stand upright and are very thin that we can ignore their widths. Once the bullet touches any of the obstacles, we cannot be sure of its trajectory thereafter. So we have to plan launches to avoid these obstacles.
  • Launching the bullet almost vertically in a speed high enough, we can easily make it hit the target without touching any of the obstacles, but giving a high initial speed is energy-consuming. Energy is extremely precious in space exploration, and the initial speed of the bullet should be minimized. Making the bullet bounce a number of times may make the bullet reach the target with lower initial speed.
  • The bullet should bounce, however, no more than a given number of times. Although the body of the bullet is made strong enough, some of the sensors inside may not stand repetitive shocks. The allowed numbers of bounces vary on the type of the observation bullets.

You are summoned engineering assistance to this project to author a smart program that tells the minimum required initial speed of the bullet to accomplish the mission.

Figure D.1 gives a sketch of a situation, roughly corresponding to the situation of the Sample Input 4 given below.

Figure D.1. A sample situation

You can assume the following.

  • The atmosphere of the planet is so thin that atmospheric resistance can be ignored.
  • The planet is large enough so that its surface can be approximated to be a completely flat plane.
  • The gravity acceleration can be approximated to be constant up to the highest points a bullet can reach.

These mean that the bullets fly along a perfect parabolic trajectory.

You can also assume the following.

  • The surface of the planet and the bullets are made so hard that bounces can be approximated as elastic collisions. In other words, loss of kinetic energy on bounces can be ignored. As we can also ignore the atmospheric resistance, the velocity of a bullet immediately after a bounce is equal to the velocity immediately after its launch.
  • The bullets are made compact enough to ignore their sizes.
  • The launcher is also built compact enough to ignore its height.

You, a programming genius, may not be an expert in physics. Let us review basics of rigid-body dynamics.

We will describe here the velocity of the bullet v with its horizontal and vertical components vx and vy (positive meaning upward). The initial velocity has the components vix and viy, that is, immediately after the launch of the bullet, vx = vix and vy = viy hold. We denote the horizontal distance of the bullet from the launcher as x and its altitude as y at time t.

  • The horizontal velocity component of the bullet is kept constant during its flight when atmospheric resistance is ignored. Thus the horizontal distance from the launcher is proportional to the time elapsed.

    x=vixt(1)(1)x=vixt
  • The vertical velocity component vy is gradually decelerated by the gravity. With the gravity acceleration of g, the following differential equation holds during the flight.

    dvydt=−g(2)(2)dvydt=−g

    Solving this with the initial conditions of vy = viy and y = 0 when t = 0, we obtain the following.

    y==−12gt2+viyt−(12gt−viy)t(3)(4)(3)y=−12gt2+viyt(4)=−(12gt−viy)t

    The equation (4) tells that the bullet reaches the ground again when t = 2viy/g. Thus, the distance of the point of the bounce from the launcher is 2vixviy/g. In other words, to make the bullet fly the distance of l, the two components of the initial velocity should satisfy 2vixviy = lg.

  • Eliminating the parameter t from the simultaneous equations above, we obtain the following equation that escribes the parabolic trajectory of the bullet.

    y=−(g2v2ix)x2+(viyvix)x(5)(5)y=−(g2vix2)x2+(viyvix)x

For ease of computation, a special unit system is used in this project, according to which the gravity acceleration g of the planet is exactly 1.0.

Input

The input consists of several tests case with the following format.

d n bp1 h1p2 h2⋮pn hnd n bp1 h1p2 h2⋮pn hn

For each test, the first line contains three integers, dn, and b. Here, d is the distance from the launcher to the target spot (1 ≤ d ≤ 10000), n is the number of obstacles (1 ≤ n ≤ 10), and b is the maximum number of bounces allowed, not including the bounce at the target spot (0 ≤ b ≤ 15).

Each of the following n lines has two integers. In the k-th line, pk is the position of the k-th obstacle, its distance from the launcher, and hk is its height from the ground level. You can assume that 0 < p1, pk < pk + 1 for k = 1, …, n − 1, and pn < d. You can also assume that 1 ≤ hk ≤ 10000 for k = 1, …, n.

Output

Output the smallest possible initial speed vi that makes the bullet reach the target. The initial speed vi of the bullet is defined as follows.

vi=v2ix+v2iy−−−−−−−√vi=vix2+viy2

The output should not contain an error greater than 0.0001.

Sample Input

100 1 0
50 100 10 1 0
4 2 100 4 3
20 10
30 10
40 10
50 10 343 3 2
56 42
190 27
286 34

Sample Output

14.57738
3.16228
7.78175
11.08710 这题一开始二分写的,但是第二组样例一直过不去,后面深入思考,
速度其实是有一个表达式的,hmax有一个最小值,二分没有想到这点,
需要特判一下

不会电脑画图,就这样吧,一些重要的公式推导写出来了。

 #include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
using namespace std;
const int maxn = 2e5 + ;
const int INF = 0x7fffffff;
double x[], h[], x1[], h1[];
double d, len, ans, hmax;
int n, b;
int main() {
while(scanf("%lf%d%d", &d, &n, &b) != EOF) {
ans = 1.0 * INF;
for (int i = ; i < n ; i++) {
scanf("%lf%lf", &x[i], &h[i]);
}
int flag = ;
for (int i = ; i <= b + ; i++) {
len = 1.0 * d / (1.0 * i);
flag = ;
hmax = -;
for (int j = ; j < n ; j++) {
x1[j] = x[j];
while(x1[j] - len >= ) {
x1[j] -= len;
}
h1[j] = h[j];
if (fabs(x[j]) <= 1e-) {
flag = ;
break;
}
double temph = len * len * h1[j] / (len - x1[j]) / x1[j] / 4.0;
hmax = max(hmax, temph);
}
if (flag == ) continue;
if (hmax < len / ) ans = min(ans, len);
else ans = min(len * len / / hmax + * hmax, ans);
}
printf("%.5f\n", sqrt(ans));
}
return ;
}

Space Golf~物理题目的更多相关文章

  1. Codeforces Gym 100803D Space Golf 物理题

    Space Golf 题目连接: http://codeforces.com/gym/100803/attachments Description You surely have never hear ...

  2. UVALive 6886 Golf Bot FFT

    Golf Bot 题目连接: http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=129724 Description Do ...

  3. HDU 6373.Pinball -简单的计算几何+物理受力分析 (2018 Multi-University Training Contest 6 1012)

    6373.Pinball 物理受力分析题目. 画的有点丑,通过受力分析,先求出θ角,为arctan(b/a),就是atan(b/a),然后将重力加速度分解为垂直斜面的和平行斜面的,垂直斜面的记为a1, ...

  4. 2014-2015 ACM-ICPC, Asia Tokyo Regional Contest

    2014-2015 ACM-ICPC, Asia Tokyo Regional Contest A B C D E F G H I J K O O O O   O O         A - Bit ...

  5. C语言100道经典算法

    经典的100个c算法 C语言的学习要从基础,100个经典的算法真不知道关于语言的应该发在那里,所以就在这里发了,发贴的原因有2个,第一个,这东西非常值得学习,第二个,想..........嘿嘿,大家应 ...

  6. MMO之禅(三)职业能力

    MMO之禅(三)职业能力 --技术九层阶梯 Zephyr 201304 有了精神,我们还需要实际的行动. 到底需要什么能力?自我分析,窃以为为有九层,无所谓高低,因为每一层都需要不断地砥砺,编程,本身 ...

  7. C语言100个经典算法

    POJ上做做ACM的题 语言的学习基础,100个经典的算法C语言的学习要从基础开始,这里是100个经典的算法-1C语言的学习要从基础开始,这里是100个经典的算法 题目:古典问题:有一对兔子,从出生后 ...

  8. c-大量经典的c算法---ShinePans

    经典的100个c算法 算法  题目:古典问题:有一对兔子.从出生后第3个月起每一个月都生一对兔子.小兔 子长到第三个月后每一个月又生一对兔子,假如兔子都不死,问每一个月的兔子总数 为多少? _____ ...

  9. LeetCode OJ 73. Set Matrix Zeroes

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

随机推荐

  1. JSTL之forEach的使用详解(简单的技术说得很详细)

    在使用JSTL的核心标签库forEach之前,首先需要在JSP中通过taglib指令引入核心标签库: <%@ taglib uri="http://java.sun.com/jsp/j ...

  2. Oracle WorkFlow(工作流)(一)

    转载自:http://hi.baidu.com/quce227/item/3dee702c66466a0343634a58 1概述 1.1工作流的概念 Workflow是EBS的基础架构技术之一,系统 ...

  3. 版本控制之最佳实践(Git版)

    现如今,应该每个开发者都在使用版本控制工具了吧.然而,如果你理解版本控制的基本规则,你便能更好地发挥它的效用.在此,我们汇总了一些最佳实践,希望你在使用Git做版本控制时能够了然于心.得心应手. 1. ...

  4. UNIX环境高级编程——文件I/O

    一.文件描述符 对于Linux而言,所有对设备或文件的操作都是通过文件描述符进行的.当打开或者创建一个文件的时候,内核向进程返回一个文件描述符(非负整数).后续对文件的操作只需通过该文件描述符,内核记 ...

  5. 【一天一道LeetCode】#69. Sqrt(x)

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Impleme ...

  6. Linux Shell 命令--awk

    说明: awk被设计用于数据流,能够对列和行进行操作.而sed更多的是匹配,进行替换和删除.awk有很多内建的功能,比如数组,函数等.灵活性是awk的最大优势.  awk的结构}{i++}END{pr ...

  7. hadoop namenode格式化问题汇总

    hadoop namenode格式化问题汇总 (持续更新) 0 Hadoop集群环境 3台rhel6.4,2个namenode+2个zkfc, 3个journalnode+zookeeper-serv ...

  8. kettle文件自动化部署(shell脚本执行):命令行参数传入

    shell脚本中调用kitchen 和 pan去执行,job和transformation文件.分 windows和 dos系统两种. 举个简单的小例子 shell脚本: export JAVA_HO ...

  9. 轻量级网络库libevent概况

    Libevent is a library for writing fast portable nonblocking IO. libevent是一个为编写快速可移植的非阻塞IO程序而设计的. lib ...

  10. CSS解决无空格太长的字母,数字不会自动换行的问题

    其实很简单,代码如下所示,注意 Style: <div class="detail_title" style="word-break: break-all;&quo ...