Space Golf~物理题目
Description
You surely have never heard of this new planet surface exploration scheme, as it is being carried out in a project with utmost secrecy. The scheme is expected to cut costs of conventional rover-type mobile explorers considerably, using projected-type equipment nicknamed "observation bullets".
Bullets do not have any active mobile abilities of their own, which is the main reason of their cost-efficiency. Each of the bullets, after being shot out on a launcher given its initial velocity, makes a parabolic trajectory until it touches down. It bounces on the surface and makes another parabolic trajectory. This will be repeated virtually infinitely.
We want each of the bullets to bounce precisely at the respective spot of interest on the planet surface, adjusting its initial velocity. A variety of sensors in the bullet can gather valuable data at this instant of bounce, and send them to the observation base. Although this may sound like a conventional target shooting practice, there are several issues that make the problem more difficult.
- There may be some obstacles between the launcher and the target spot. The obstacles stand upright and are very thin that we can ignore their widths. Once the bullet touches any of the obstacles, we cannot be sure of its trajectory thereafter. So we have to plan launches to avoid these obstacles.
- Launching the bullet almost vertically in a speed high enough, we can easily make it hit the target without touching any of the obstacles, but giving a high initial speed is energy-consuming. Energy is extremely precious in space exploration, and the initial speed of the bullet should be minimized. Making the bullet bounce a number of times may make the bullet reach the target with lower initial speed.
- The bullet should bounce, however, no more than a given number of times. Although the body of the bullet is made strong enough, some of the sensors inside may not stand repetitive shocks. The allowed numbers of bounces vary on the type of the observation bullets.
You are summoned engineering assistance to this project to author a smart program that tells the minimum required initial speed of the bullet to accomplish the mission.
Figure D.1 gives a sketch of a situation, roughly corresponding to the situation of the Sample Input 4 given below.

Figure D.1. A sample situation
You can assume the following.
- The atmosphere of the planet is so thin that atmospheric resistance can be ignored.
- The planet is large enough so that its surface can be approximated to be a completely flat plane.
- The gravity acceleration can be approximated to be constant up to the highest points a bullet can reach.
These mean that the bullets fly along a perfect parabolic trajectory.
You can also assume the following.
- The surface of the planet and the bullets are made so hard that bounces can be approximated as elastic collisions. In other words, loss of kinetic energy on bounces can be ignored. As we can also ignore the atmospheric resistance, the velocity of a bullet immediately after a bounce is equal to the velocity immediately after its launch.
- The bullets are made compact enough to ignore their sizes.
- The launcher is also built compact enough to ignore its height.
You, a programming genius, may not be an expert in physics. Let us review basics of rigid-body dynamics.
We will describe here the velocity of the bullet v with its horizontal and vertical components vx and vy (positive meaning upward). The initial velocity has the components vix and viy, that is, immediately after the launch of the bullet, vx = vix and vy = viy hold. We denote the horizontal distance of the bullet from the launcher as x and its altitude as y at time t.
The horizontal velocity component of the bullet is kept constant during its flight when atmospheric resistance is ignored. Thus the horizontal distance from the launcher is proportional to the time elapsed.
x=vixt(1)(1)x=vixtThe vertical velocity component vy is gradually decelerated by the gravity. With the gravity acceleration of g, the following differential equation holds during the flight.
dvydt=−g(2)(2)dvydt=−gSolving this with the initial conditions of vy = viy and y = 0 when t = 0, we obtain the following.
y==−12gt2+viyt−(12gt−viy)t(3)(4)(3)y=−12gt2+viyt(4)=−(12gt−viy)tThe equation (4) tells that the bullet reaches the ground again when t = 2viy/g. Thus, the distance of the point of the bounce from the launcher is 2vixviy/g. In other words, to make the bullet fly the distance of l, the two components of the initial velocity should satisfy 2vixviy = lg.
Eliminating the parameter t from the simultaneous equations above, we obtain the following equation that escribes the parabolic trajectory of the bullet.
y=−(g2v2ix)x2+(viyvix)x(5)(5)y=−(g2vix2)x2+(viyvix)x
For ease of computation, a special unit system is used in this project, according to which the gravity acceleration g of the planet is exactly 1.0.
Input
The input consists of several tests case with the following format.
For each test, the first line contains three integers, d, n, and b. Here, d is the distance from the launcher to the target spot (1 ≤ d ≤ 10000), n is the number of obstacles (1 ≤ n ≤ 10), and b is the maximum number of bounces allowed, not including the bounce at the target spot (0 ≤ b ≤ 15).
Each of the following n lines has two integers. In the k-th line, pk is the position of the k-th obstacle, its distance from the launcher, and hk is its height from the ground level. You can assume that 0 < p1, pk < pk + 1 for k = 1, …, n − 1, and pn < d. You can also assume that 1 ≤ hk ≤ 10000 for k = 1, …, n.
Output
Output the smallest possible initial speed vi that makes the bullet reach the target. The initial speed vi of the bullet is defined as follows.
The output should not contain an error greater than 0.0001.
Sample Input
100 1 0
50 100 10 1 0
4 2 100 4 3
20 10
30 10
40 10
50 10 343 3 2
56 42
190 27
286 34
Sample Output
14.57738
3.16228
7.78175
11.08710 这题一开始二分写的,但是第二组样例一直过不去,后面深入思考,
速度其实是有一个表达式的,hmax有一个最小值,二分没有想到这点,
需要特判一下
不会电脑画图,就这样吧,一些重要的公式推导写出来了。
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
using namespace std;
const int maxn = 2e5 + ;
const int INF = 0x7fffffff;
double x[], h[], x1[], h1[];
double d, len, ans, hmax;
int n, b;
int main() {
while(scanf("%lf%d%d", &d, &n, &b) != EOF) {
ans = 1.0 * INF;
for (int i = ; i < n ; i++) {
scanf("%lf%lf", &x[i], &h[i]);
}
int flag = ;
for (int i = ; i <= b + ; i++) {
len = 1.0 * d / (1.0 * i);
flag = ;
hmax = -;
for (int j = ; j < n ; j++) {
x1[j] = x[j];
while(x1[j] - len >= ) {
x1[j] -= len;
}
h1[j] = h[j];
if (fabs(x[j]) <= 1e-) {
flag = ;
break;
}
double temph = len * len * h1[j] / (len - x1[j]) / x1[j] / 4.0;
hmax = max(hmax, temph);
}
if (flag == ) continue;
if (hmax < len / ) ans = min(ans, len);
else ans = min(len * len / / hmax + * hmax, ans);
}
printf("%.5f\n", sqrt(ans));
}
return ;
}
Space Golf~物理题目的更多相关文章
- Codeforces Gym 100803D Space Golf 物理题
Space Golf 题目连接: http://codeforces.com/gym/100803/attachments Description You surely have never hear ...
- UVALive 6886 Golf Bot FFT
Golf Bot 题目连接: http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=129724 Description Do ...
- HDU 6373.Pinball -简单的计算几何+物理受力分析 (2018 Multi-University Training Contest 6 1012)
6373.Pinball 物理受力分析题目. 画的有点丑,通过受力分析,先求出θ角,为arctan(b/a),就是atan(b/a),然后将重力加速度分解为垂直斜面的和平行斜面的,垂直斜面的记为a1, ...
- 2014-2015 ACM-ICPC, Asia Tokyo Regional Contest
2014-2015 ACM-ICPC, Asia Tokyo Regional Contest A B C D E F G H I J K O O O O O O A - Bit ...
- C语言100道经典算法
经典的100个c算法 C语言的学习要从基础,100个经典的算法真不知道关于语言的应该发在那里,所以就在这里发了,发贴的原因有2个,第一个,这东西非常值得学习,第二个,想..........嘿嘿,大家应 ...
- MMO之禅(三)职业能力
MMO之禅(三)职业能力 --技术九层阶梯 Zephyr 201304 有了精神,我们还需要实际的行动. 到底需要什么能力?自我分析,窃以为为有九层,无所谓高低,因为每一层都需要不断地砥砺,编程,本身 ...
- C语言100个经典算法
POJ上做做ACM的题 语言的学习基础,100个经典的算法C语言的学习要从基础开始,这里是100个经典的算法-1C语言的学习要从基础开始,这里是100个经典的算法 题目:古典问题:有一对兔子,从出生后 ...
- c-大量经典的c算法---ShinePans
经典的100个c算法 算法 题目:古典问题:有一对兔子.从出生后第3个月起每一个月都生一对兔子.小兔 子长到第三个月后每一个月又生一对兔子,假如兔子都不死,问每一个月的兔子总数 为多少? _____ ...
- LeetCode OJ 73. Set Matrix Zeroes
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...
随机推荐
- 【VSTS 日志】VSTS 所有功能,看这个页面就够了!
随着Connect();//2015大会的结束,一大波的好消息随之而来.今天小编刚刚发现了Visual Studio Team Services / Team Foundation Server 的完 ...
- android-async-http详解
android-async-http开源项目可以是我们轻松的获取网络数据或者向服务器发送数据,使用起来非常简单,关于android-async-http开源项目的介绍内容来自于官方:http://lo ...
- Java学习从菜鸟变大鸟之二 输入输出流(IO)
在软件开发中,数据流和数据库操作占据了一个很重要的位置,所以,熟悉操作数据流和数据库,对于每一个开发者来说都是很重要的,今天就来总结一下JavaI/O. 流 流是一个很形象的概念,当程序需要读取数据的 ...
- (一)php的基本知识和一些注意点
注意:任何程序,包括php,在运行时都在内存中进行,php代码需要被读取到内存中才能执行. [php的运行方式] 1.通过服务器(例如apache)调用. 2.通过命令行调用(不需要服务器参与,因为没 ...
- GDAL书籍
GDAL的书籍经过快两年的编写修改,终于出版发行了,有需要的同学可以到下面的网址进行购买. 购买地址: 亚马逊:http://www.amazon.cn/GDAL%E6%BA%90%E7%A0%81% ...
- (五十五)iOS多线程之GCD
GCD的全称为Grand Central Dispatch,翻译为大中央调度,是Apple开发的一个多线程编程解决方法. 进程和线程的概念: 正在进行中的程序被称为进程,负责程序运行的内存分配,每一个 ...
- 18_Android中Service的生命周期,远程服务,绑定远程服务,aidl服务调用,综合服务案例,编写一个应用程序调用远程支付宝远程服务场景
============================================================================ 服务的生命周期: 一.采用start的方式开始 ...
- 更改EBS R12中forms的模式Servlet/Socket
EBS R12中forms的模式有:Servlet mode 和 Forms Socket mode 当我们完成Oracle EBS R12套件的快速安装后,forms的默认配置是Servlet mo ...
- How to SetUp The Receiving Transaction Manager
In this Document Goal Solution References APPLIES TO: Oracle Inventory Management - Version: 1 ...
- RHEL6从源码安装python及其他软件包
RHEL6从源码安装python及其他软件包 ## install ssl $ sudo yum install openssl-devel or: $ sudo apt-get install li ...