斐波那契数列(C#)
斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。
解题如下:
Default.aspx:
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title></title>
</head>
<body>
<form id="form1" runat="server">
<div>
请输入n的值:<asp:TextBox runat="server" ID="sa"></asp:TextBox>
<asp:Button runat="server" ID="suit" Text="斐波那契数列" OnClick="suit_Click"/>
结果:<asp:TextBox runat="server" ID="sa1"></asp:TextBox>
</div>
</form>
</body>
</html>
Default.aspx.cs:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls; public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{ }
protected void suit_Click(object sender, EventArgs e)
{
long m = Convert.ToInt64(sa.Text.Trim());
sa1.Text=""+ Fibonacci(m)+"";
}
//速度快
public static long FbnqSort2(long num)
{
long ret = ;
long num1 = ;
long num2 = ;
if (num == || num == )
{
ret = ;
}
else if (num > )
{ for (int i = ; i < num - ; i++)
{
ret = num1 + num2;
num1 = num2;
num2 = ret;
}
}
else
{
ret = ;
}
return ret;
}
//速度极慢
public static long fib(long n)
{
if (n == || n == )
{
return ;
}
else if (n > )
{
long a = fib(n - );
long b = fib(n - );
return a + b;
}
else
{
return ;
}
}
//速度快
private static long F2(long number)
{
long a = , b = ;
if (number == || number == )
{
return ;
}
else if (number > )
{
for (int i = ; i <= number; i++)
{
long c = a + b;
b = a;
a = c;
}
return a;
}
else
{
return ;
}
}
//速度快
public static long Fibonacci(long n)
{
long f0 = ;
long f1 = ;
long f2 = ;
int t = ;
if (n < )
{
return ;
}
else if (n == || n == )
{
return n;
}
else
{
while (t <= n)
{
f2 = f0 + f1;
f0 = f1;
f1 = f2;
t++;
}
return f2;
}
}
//速度极慢
public static long F1(long number)
{
if (number == || number == )
{
return ;
}
else if (number > )
{
return F1(number - ) + F1(number - );
}
else
{
return ;
}
}
}
运行结果:

斐波那契数列(C#)的更多相关文章
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
- 简单Java算法程序实现!斐波那契数列函数~
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...
- js 斐波那契数列(兔子问题)
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
随机推荐
- 简单工厂模式(Simple Factory Pattern)
简单工厂模式概述 定义:定义一个工厂类,他可以根据参数的不同返回不同类的实例,被创建的实例通常都具有共同的父类 在简单工厂模式中用于被创建实例的方法通常为静态(static)方法,因此简单工厂模式又被 ...
- 新手必看!Office Web Apps 2013 安装与配置(实战)
分享人:广州华软 星尘 一. 前言 Office Web Apps Server 是Office 服务器产品,它可提供在Sharepoint 2013网站中在线浏览和编辑 Word.PowerPoin ...
- SVN简介与安装
SVN 简介: Subversion(SVN) 是一个开源的版本控制系統, 也就是说 Subversion 管理着随时间改变的数据. 这些数据放置在一个中央资料档案库(repository) 中. 这 ...
- Windows系统配置OutLook邮箱教程一
本示例演示Windows系统中OutLook邮箱设置 1.打开控制面板->类型选择小图标->找到Mail(Microsoft OutLook 2016). 2.鼠标左键双击Mail. 3. ...
- 使用whistle模拟cgi接口异常:错误码、502、慢网速、超时
绝大多数程序只考虑了接口正常工作的场景,而用户在使用我们的产品时遇到的各类异常,全都丢在看似 ok 的 try catch 中.如果没有做好异常的兼容和兜底处理,会极大的影响用户体验,严重的还会带来安 ...
- 解决Ajax请求时无法重定向的问题
今天发现,当使用Ajax请求时,如果后台进行重定向到其他页面时是无法成功的,只能在浏览器地址栏输入才能够实现重定向. Ajax默认就是不支持重定向的,它是局部刷新,不重新加载页面. 需要实现的功能是, ...
- 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之十三 || DTOs 对象映射使用,项目部署Windows+Linux完整版
更新 很多小伙伴在用 IIS 发布的时候,总是会有一些问题,文章下边 #autoid-6-0-0 我也简单的动图展示了,如何 publish 到 IIS 的过程,如果你能看懂,却发现自己的项目有问题的 ...
- python接口自动化(十一)--发送post【data】(详解)
简介 前面登录博客园的是传 json 参数,由于其登录机制的改变没办法演示,然而在工作中有些登录不是传 json 的,如 jenkins 的登录,这里小编就以jenkins 登录为案例,传 data ...
- qml demo分析(maskedmousearea-异形窗口)
一.效果展示 如本文的标题所示,这篇文章分析的demo是一个异形窗口,主要展示鼠标在和异形区域交互的使用,效果如图1所示,当鼠标移动到白云或者月亮上时,相应的物体会高亮,当鼠标按下时,物体会有一个放大 ...
- Python爬虫入门教程 44-100 Charles的安装与使用-手机APP爬虫部分
1. 第二款抓包工具Charles安装与使用 Charles和Fiddler一样,也是一款抓包工具,比Fiddler界面更加清晰,支持多平台 1.1 官方网址 https://www.charlesp ...