Linear Regression with Scikit Learn
Before you read
This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below:
The Python version: 3.6.2
The Numpy version: 1.8.0rc1
The Scikit-Learn version: 0.19.0
The Matplotlib version: 2.0.2
Training Data
Here is the training data about the Relationship between Pizza and Diameter below:
| training data | Diameter(inch) | Price($) |
|---|---|---|
| 1 | 6 | 7 |
| 2 | 8 | 9 |
| 3 | 10 | 13 |
| 4 | 14 | 17.5 |
| 5 | 18 | 18 |
Now, we can plot the figure about the diameter and price first:
import matplotlib as plt
def run_plt():
plt.figure()
plt.title('Pizza Price with diameter.')
plt.xlabel('diameter(inch)')
plt.ylabel('price($)')
plt.axis([0, 25, 0, 25])
plt.grid(True)
return plt
X = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt = run_plt()
plt.plot(X, y, 'k.')
plt.show()
Now we get the figure here.
Next, we use linear regression to fit this model.
from scikit.linear_model import LinearRegression
model = LinearRegression()
# X and y is the data in previous code.
model.fit(X, y)
# To predict the 12inch pizza price.
price = model.predict([12][0])
print('The 12 Pizza price: % .2f' % price)
# The 12 Pizza price: 13.68
The Simple Linear Regression define:
Simple linear regression assumes that a linear relationship exists between the response variable and explanatory variable; it models this relationship with a linear surface called a hyperplane. A hyperplane is a subspace that has one dimension less than the ambient space that contains it. In simple linear regression, there is one dimension for the response variable and another dimension for the explanatory variable, making a total of two dimensions. The regression hyperplane therefore, has one dimension; a hyperplane with one dimension is a line.
The Simple Linear Regression model that scikit-learn use is below:
\(y = \alpha + \beta * x\)
\(y\) is the predicted value of the response variable. \(x\) is the explanatory variable. \(alpha\) and \(beta\) are learned by the learning algorithm.
If we have a data \(X_{2}\) like that,
\(X_{2}\) = [[0], [10], [14], [25]]
We want to use Linear Regression to Predict the Prize Price and Print the Figure. There are two steps:
- Use \(x\), \(y\) previous to fit the model.
- Predict the Prize price.
model = LinearRegression()
# X, y is the prevoius data
model.fit(X,y)
X2 = [[0], [10], [14], [25]]
y2 = model.predict(X2)
plt.plot(X2, y2, 'g-')
The figure is following:
Summarize
The function previous that I used is called ordinary least squares. The process is :
- Define the cost function and fit the training data.
- Get the predict data.
Evaluating the fitness of a model with a cost function
There are serveral line created by different parmeters, and we got a question is that which one is the best-fitting regression line ?
plt = run_plt()
plt.plot(X, y, 'k.')
y3 = [14.25, 14.25, 14.25, 14.25]
y4 = y2 * 0.5 + 5
model.fit(X[1:-1], y[1:-1])
y5 = model.predict(X2)
plt.plot(X2, y2, 'g-.')
plt.plot(X2, y3, 'r-.')
plt.plot(X2, y4, 'y-.')
plt.plot(X2, y5, 'o-')
plt.show()
The Define of cost function
A cost function, also called a loss function, is used to de ne and measure the
error of a model. The differences between the prices predicted by the model andthe observed prices of the pizzas in the training set are called residuals or training errors. Later, we will evaluate a model on a separate set of test data; the differences between the predicted and observed values in the test data are called prediction errors or test errors.
The figure is like that:
The original data is black point, as we can see, the green line is the best-fitting regression line. But how computer know!!!!
So we should use some mathematic method to tell the computer which one is best-fitting.
model.fit(X, y)
yr = model.predict(X)
for idx, x in enumerate(X)
plt.plot([x, x], [y[idx], yr[idx]], 'r-')
Next we plot the residuals figure.
We can use residual sum of squares to measure the fitness.
\(SS_{res} = \sum _{i =1}^n(y_{i} - f(x_{i}))^{2}\)
Use Numpy package to calculate the \(SS_{res}\) value is 1.75
import numpy as np
SSres = np.mean((model.predict(X) - y)** 2)
Solving ordinary least squares for simple linear regression
Recall that simple linear regression is that:
\(y = \alpha + \beta * x\)
Our goal is to get the value of \(alpha\) and \(beta\). We will solve \(beta\) first, we should calculate the variance of \(x\) and covariance of \(x\) and \(y\).
Variance is a measure of how far a set of values is spread out. If all of the numbers in the set are equal, the variance of the set is zero.
\(var(x) = \frac{\sum_{i=1}^n(x_{i} - \overline{x})^{2}}{n-1}\)
\(\overline{x}\) is the mean of x .
var = np.var(X, ddof =1)
# var = 23.2
Convariance is a measure of how much two variales change to together. If the value of variables increase together. their convariace is positive. If one variable tends to increase while the other decreases, their convariace is negative. If their is no linear relationship between the two variables, their convariance will be equals to zero.
\(cov(x,y) = \frac{\sum_{i=1}^n(x_{i}-\overline{x})(y_{i}-\overline{y})}{n-1}\)
import numpy as np
cov = np.cov([6, 8, 10, 14, 18], [7, 9, 13, 17.5, 18])[0][1]
Their is a formula solve \(\beta\)
\(\beta = \frac{cov(x,y)}{var(x)}\)
\(\beta = \frac{22.65}{23.2} = 0.9762\)
We can solve \(\alpha\) as the following formula:
\(\alpha = \overline{y} - \beta * \overline{x}\)
\(\alpha = 12.9 - 0.9762 * 11.2 =1.9655\)
Summarize
The Regression formula is like following:
\(y = 1.9655 + 0.9762 * x\)
Linear Regression with Scikit Learn的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- [Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 二、Linear Regression 练习(转载)
转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2961660.html 前言 本文是多元线性回归的练习,这里练习的是最简单的二元 ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
随机推荐
- 使用Dockerfile创建一个tomcat镜像,并运行一个简单war包
docker已经看了有一段时间了,对镜像和容器也有了一个大致了解,参考书上的例子制作一个tomcat镜像,并简单运行一个HelloWorld.war 1.首先下载linux环境的tomcat和jdk, ...
- 从Firefox升级说学习方法
今天早上,打开PortableAPPs时,它提示我升级FireFox,跟往常一样我没考虑就升级了. 打开Firefox 57神速,很是惊喜,打开后发现悲剧了,自己(通过下载插件)定制的功能都不能使用了 ...
- C语言-学生博客汇总
一.学生个人博客汇总 五班 学号 姓名 博客地址 4079 马天琦 http://www.cnblogs.com/simalang/ 4080 马宇欣 http://www.cnblogs.com/m ...
- 亚马逊AWS学习——VPC里面几个概念的关系
VPC中涉及几个概念: VPC 子网 路由表 Internet网关 安全组 今天来讲讲这几个概念之间的关系. 1. VPC 说的就是VPC,当然VPC范围是最大的,VPC即virtual privat ...
- bzoj 4399 魔法少女LJJ
4399: 魔法少女LJJ Time Limit: 20 Sec Memory Limit: 162 MBhttp://www.lydsy.com/JudgeOnline/problem.php?i ...
- 微信qq,新浪等第三方授权登录的理解
偶们常说的第三方是指的微信,qq,新浪这些第三方,因为现在基本每个人都有qq或者微信,那么我们就可以通过这些第三方进行登录.而这些网站比如慕课网是通过第三方获取用户的基本信息 它会有个勾选按钮,提示是 ...
- Mybatis框架入门
Mybaits框架 一.什么是Mybatis MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了googl ...
- rsync 自动创建目录的坑点
rsync同步文件有三种模式: 1.把源站路径下某个文件,同步到目标路径.例如rsync -aR /data/1/2/3/a.txt 1.1.1.1:/data/ ,目标机器将自动创建多层目录存放a. ...
- BizTalk 2016 配置 RosettaNet遇到的坑
本文只针对已经安装好BizTalk 2016 需要在安装RosettaNet加速器的伙伴. IIS配置 权限问题 错误信息 Failed to get IIS metabase property. E ...
- 自动化服务部署(一):Linux下安装JDK
自动化测试的主要目的是为了执行回归测试.当然,为了模拟真实的用户操作,一般都是在UAT或者生产环境进行回归测试. 为了尽量避免内网和外网解析对测试结果的影响,将自动化测试服务部署在外网的服务器是比较好 ...



