Linear Regression with Scikit Learn
Before you read
This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below:
The Python version: 3.6.2
The Numpy version: 1.8.0rc1
The Scikit-Learn version: 0.19.0
The Matplotlib version: 2.0.2
Training Data
Here is the training data about the Relationship between Pizza and Diameter below:
training data | Diameter(inch) | Price($) |
---|---|---|
1 | 6 | 7 |
2 | 8 | 9 |
3 | 10 | 13 |
4 | 14 | 17.5 |
5 | 18 | 18 |
Now, we can plot the figure about the diameter and price first:
import matplotlib as plt
def run_plt():
plt.figure()
plt.title('Pizza Price with diameter.')
plt.xlabel('diameter(inch)')
plt.ylabel('price($)')
plt.axis([0, 25, 0, 25])
plt.grid(True)
return plt
X = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt = run_plt()
plt.plot(X, y, 'k.')
plt.show()
Now we get the figure here.
Next, we use linear regression to fit this model.
from scikit.linear_model import LinearRegression
model = LinearRegression()
# X and y is the data in previous code.
model.fit(X, y)
# To predict the 12inch pizza price.
price = model.predict([12][0])
print('The 12 Pizza price: % .2f' % price)
# The 12 Pizza price: 13.68
The Simple Linear Regression define:
Simple linear regression assumes that a linear relationship exists between the response variable and explanatory variable; it models this relationship with a linear surface called a hyperplane. A hyperplane is a subspace that has one dimension less than the ambient space that contains it. In simple linear regression, there is one dimension for the response variable and another dimension for the explanatory variable, making a total of two dimensions. The regression hyperplane therefore, has one dimension; a hyperplane with one dimension is a line.
The Simple Linear Regression model that scikit-learn use is below:
\(y = \alpha + \beta * x\)
\(y\) is the predicted value of the response variable. \(x\) is the explanatory variable. \(alpha\) and \(beta\) are learned by the learning algorithm.
If we have a data \(X_{2}\) like that,
\(X_{2}\) = [[0], [10], [14], [25]]
We want to use Linear Regression to Predict the Prize Price and Print the Figure. There are two steps:
- Use \(x\), \(y\) previous to fit the model.
- Predict the Prize price.
model = LinearRegression()
# X, y is the prevoius data
model.fit(X,y)
X2 = [[0], [10], [14], [25]]
y2 = model.predict(X2)
plt.plot(X2, y2, 'g-')
The figure is following:
Summarize
The function previous that I used is called ordinary least squares. The process is :
- Define the cost function and fit the training data.
- Get the predict data.
Evaluating the fitness of a model with a cost function
There are serveral line created by different parmeters, and we got a question is that which one is the best-fitting regression line ?
plt = run_plt()
plt.plot(X, y, 'k.')
y3 = [14.25, 14.25, 14.25, 14.25]
y4 = y2 * 0.5 + 5
model.fit(X[1:-1], y[1:-1])
y5 = model.predict(X2)
plt.plot(X2, y2, 'g-.')
plt.plot(X2, y3, 'r-.')
plt.plot(X2, y4, 'y-.')
plt.plot(X2, y5, 'o-')
plt.show()
The Define of cost function
A cost function, also called a loss function, is used to de ne and measure the
error of a model. The differences between the prices predicted by the model andthe observed prices of the pizzas in the training set are called residuals or training errors. Later, we will evaluate a model on a separate set of test data; the differences between the predicted and observed values in the test data are called prediction errors or test errors.
The figure is like that:
The original data is black point, as we can see, the green line is the best-fitting regression line. But how computer know!!!!
So we should use some mathematic method to tell the computer which one is best-fitting.
model.fit(X, y)
yr = model.predict(X)
for idx, x in enumerate(X)
plt.plot([x, x], [y[idx], yr[idx]], 'r-')
Next we plot the residuals figure.
We can use residual sum of squares to measure the fitness.
\(SS_{res} = \sum _{i =1}^n(y_{i} - f(x_{i}))^{2}\)
Use Numpy package to calculate the \(SS_{res}\) value is 1.75
import numpy as np
SSres = np.mean((model.predict(X) - y)** 2)
Solving ordinary least squares for simple linear regression
Recall that simple linear regression is that:
\(y = \alpha + \beta * x\)
Our goal is to get the value of \(alpha\) and \(beta\). We will solve \(beta\) first, we should calculate the variance of \(x\) and covariance of \(x\) and \(y\).
Variance is a measure of how far a set of values is spread out. If all of the numbers in the set are equal, the variance of the set is zero.
\(var(x) = \frac{\sum_{i=1}^n(x_{i} - \overline{x})^{2}}{n-1}\)
\(\overline{x}\) is the mean of x .
var = np.var(X, ddof =1)
# var = 23.2
Convariance is a measure of how much two variales change to together. If the value of variables increase together. their convariace is positive. If one variable tends to increase while the other decreases, their convariace is negative. If their is no linear relationship between the two variables, their convariance will be equals to zero.
\(cov(x,y) = \frac{\sum_{i=1}^n(x_{i}-\overline{x})(y_{i}-\overline{y})}{n-1}\)
import numpy as np
cov = np.cov([6, 8, 10, 14, 18], [7, 9, 13, 17.5, 18])[0][1]
Their is a formula solve \(\beta\)
\(\beta = \frac{cov(x,y)}{var(x)}\)
\(\beta = \frac{22.65}{23.2} = 0.9762\)
We can solve \(\alpha\) as the following formula:
\(\alpha = \overline{y} - \beta * \overline{x}\)
\(\alpha = 12.9 - 0.9762 * 11.2 =1.9655\)
Summarize
The Regression formula is like following:
\(y = 1.9655 + 0.9762 * x\)
Linear Regression with Scikit Learn的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- [Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 二、Linear Regression 练习(转载)
转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2961660.html 前言 本文是多元线性回归的练习,这里练习的是最简单的二元 ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
随机推荐
- Mac下安装virtualenv, 并在PyCharm中使用
今天在安装一个leader写的package的时候,同事建议安装到虚拟环境中,再在PyCharm里使用该虚拟环境即可.此处记录下经过: 开发Python应用的时候,有时会遇到不同的Python应用依赖 ...
- 201621123050 《Java程序设计》第10周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...
- 冲刺NO.6
Alpha冲刺第六天 站立式会议 项目进展 项目中学生基本信息管理,与系统管理员模块基本完成,团队开始编写学生信用信息模块内容与奖惩事务管理内容,准备开始对已完成模块进行测试. 问题困难 团队成员对前 ...
- 团队作业7——第二次项目冲刺(Beta版本12.05-12.07)
1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...
- iOS开发之Objective-C与JavaScript的交互
UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...
- 顺企网 爬取16W数据保存到Mongodb
import requests from bs4 import BeautifulSoup import pymongo from multiprocessing.dummy import Pool ...
- continue和break的特殊用法。
break在程序中一般来说的作用就是跳出当前循环,然后再据需执行循环外的语句.continue也是对当前循环来说直接进入到下一次循环.其实我们在程序中有时候循环体嵌套太多,进行到某一步是希望直接bre ...
- machine learning 之 导论 一元线性回归
整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Ar ...
- Oracle10g物理DG详细配置方法及步骤
--测试环境: OS:Redhat linux(64) Primary: IP:192.168.94.198 SID:dgdb1 Hostname:dg1 DB_U ...
- python入门(14)定义函数和接收返回值
定义函数: 定义一个求绝对值的my_abs函数为例: def my_abs(x): if x >= 0: return x else: return -x 如果没有return语句,函数执行完毕 ...