[LeetCode] Minimum Genetic Mutation 最小基因变化
A gene string can be represented by an 8-character long string, with choices from "A", "C", "G", "T".
Suppose we need to investigate about a mutation (mutation from "start" to "end"), where ONE mutation is defined as ONE single character changed in the gene string.
For example, "AACCGGTT" -> "AACCGGTA" is 1 mutation.
Also, there is a given gene "bank", which records all the valid gene mutations. A gene must be in the bank to make it a valid gene string.
Now, given 3 things - start, end, bank, your task is to determine what is the minimum number of mutations needed to mutate from "start" to "end". If there is no such a mutation, return -1.
Note:
- Starting point is assumed to be valid, so it might not be included in the bank.
- If multiple mutations are needed, all mutations during in the sequence must be valid.
- You may assume start and end string is not the same.
Example 1:
start: "AACCGGTT"
end: "AACCGGTA"
bank: ["AACCGGTA"] return: 1
Example 2:
start: "AACCGGTT"
end: "AAACGGTA"
bank: ["AACCGGTA", "AACCGCTA", "AAACGGTA"] return: 2
Example 3:
start: "AAAAACCC"
end: "AACCCCCC"
bank: ["AAAACCCC", "AAACCCCC", "AACCCCCC"] return: 3
这道题跟之前的 Word Ladder 完全是一道题啊,换个故事就直接来啊,越来不走心了啊。不过博主做的时候并没有想起来是之前一样的题,而是先按照脑海里第一个浮现出的思路做的,发现也通过OJ了。博主使用的一种BFS的搜索,先建立bank数组的距离场,这里距离就是两个字符串之间不同字符的个数。然后以start字符串为起点,向周围距离为1的点扩散,采用BFS搜索,每扩散一层,level自加1,当扩散到end字符串时,返回当前level即可。注意我们要把start字符串也加入bank中,而且此时我们也知道start的坐标位置,bank的最后一个位置,然后在建立距离场的时候,调用一个count子函数,用来统计输入的两个字符串之间不同字符的个数,注意dist[i][j]和dist[j][i]是相同,所以我们只用算一次就行了。然后我们进行BFS搜索,用一个visited集合来保存遍历过的字符串,注意检测距离的时候,dist[i][j]和dist[j][i]只要有一个是1,就可以了,参见代码如下:
解法一:
class Solution {
public:
int minMutation(string start, string end, vector<string>& bank) {
if (bank.empty()) return -;
bank.push_back(start);
int res = , n = bank.size();
queue<int> q{{n - }};
unordered_set<int> visited;
vector<vector<int>> dist(n, vector<int>(n, ));
for (int i = ; i < n; ++i) {
for (int j = i + ; j < n; ++j) {
dist[i][j] = count(bank[i], bank[j]);
}
}
while (!q.empty()) {
++res;
for (int i = q.size(); i > ; --i) {
int t = q.front(); q.pop();
visited.insert(t);
for (int j = ; j < n; ++j) {
if ((dist[t][j] != && dist[j][t] != ) || visited.count(j)) continue;
if (bank[j] == end) return res;
q.push(j);
}
}
}
return -;
}
int count(string word1, string word2) {
int cnt = , n = word1.size();
for (int i = ; i < n; ++i) {
if (word1[i] != word2[i]) ++cnt;
}
return cnt;
}
};
下面这种解法跟之前的那道 Word Ladder 是一样的,也是用的BFS搜索。跟上面的解法不同之处在于,对于遍历到的字符串,我们不再有距离场,而是对于每个字符,我们都尝试将其换为一个新的字符,每次只换一个,这样会得到一个新的字符串,如果这个字符串在bank中存在,说明这样变换是合法的,加入visited集合和queue中等待下一次遍历,记得在下次置换字符的时候要将之前的还原。我们在queue中取字符串出来遍历的时候,先检测其是否和end相等,相等的话返回level,参见代码如下:
解法二:
class Solution {
public:
int minMutation(string start, string end, vector<string>& bank) {
if (bank.empty()) return -;
vector<char> gens{'A','C','G','T'};
unordered_set<string> s{bank.begin(), bank.end()};
unordered_set<string> visited;
queue<string> q{{start}};
int level = ;
while (!q.empty()) {
for (int i = q.size(); i > ; --i) {
string t = q.front(); q.pop();
if (t == end) return level;
for (int j = ; j < t.size(); ++j) {
char old = t[j];
for (char c : gens) {
t[j] = c;
if (s.count(t) && !visited.count(t)) {
visited.insert(t);
q.push(t);
}
}
t[j] = old;
}
}
++level;
}
return -;
}
};
再来看一种递归的解法,跟 Permutations 中的解法一有些类似,是遍历bank中的字符串,跟当前的字符串cur相比较,调用isDiffOne()函数判断,若正好跟cur相差一个字符,并且之前没有访问过,那么先在visited数组中标记为true,然后调用递归函数,若返回的不为-1,则用其更新结果res,因为-1代表无法变换成cur。调用完递归后恢复状态,在visited数组中标记为false。循环结束后,看res的值,若还是n+1,表示无法更新,返回-1,否则返回res+1,因为这里的res是变换了一次后到达目标字符串的最小变化次数,所以要加上当前的这次变换。至于isDiffOne()函数就没啥难度了,就是一个一个的比较,不同就累加计数器cnt,参见代码如下:
解法三:
class Solution {
public:
int minMutation(string start, string end, vector<string>& bank) {
if (bank.empty()) return -;
vector<bool> visited(bank.size(), false);
return helper(start, end, bank, visited);
}
int helper(string cur, string end, vector<string>& bank, vector<bool>& visited) {
if (cur == end) return ;
int n = bank.size(), res = n + ;
for (int i = ; i < n; ++i) {
if (visited[i] || !isDiffOne(bank[i], cur)) continue;
visited[i] = true;
int t = helper(bank[i], end, bank, visited);
if (t != -) res = min(res, t);
visited[i] = false;
}
return res == n + ? - : res + ;
}
bool isDiffOne(string& s1, string& s2) {
int cnt = , n = s1.size();
for (int i = ; i < n; ++i) {
if (s1[i] != s2[i]) ++cnt;
if (cnt > ) break;
}
return cnt == ;
}
};
类似题目:
参考资料:
https://leetcode.com/problems/minimum-genetic-mutation/
https://leetcode.com/problems/minimum-genetic-mutation/discuss/91491/dfs-java
https://leetcode.com/problems/minimum-genetic-mutation/discuss/91484/java-solution-using-bfs
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Minimum Genetic Mutation 最小基因变化的更多相关文章
- Leetcode: Minimum Genetic Mutation
A gene string can be represented by an 8-character long string, with choices from "A", &qu ...
- Leetcode 433.最小基因变化
最小基因变化 一条基因序列由一个带有8个字符的字符串表示,其中每个字符都属于 "A", "C", "G", "T"中的任 ...
- [Swift]LeetCode433. 最小基因变化 | Minimum Genetic Mutation
A gene string can be represented by an 8-character long string, with choices from "A", &qu ...
- Java实现 LeetCode 433 最小基因变化
433. 一条基因序列由一个带有8个字符的字符串表示,其中每个字符都属于 "A", "C", "G", "T"中的任意一 ...
- 【LeetCode】433. Minimum Genetic Mutation 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址: https://leetcode. ...
- 【leetcode】433. Minimum Genetic Mutation
题目如下: 解题思路:我的思路很简单,就是利用BFS方法搜索,找到最小值. 代码如下: class Solution(object): def canMutation(self, w, d, c, q ...
- [LeetCode] Minimum Height Trees 最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- [LeetCode] Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [LeetCode] Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
随机推荐
- Python中的classmethod与staticmethod
首先,这是一个经典的问题. 我们首先做一个比较: classmethod的第一个参数是cls,即调用的时候要把类传入 这意味着我们我们可以在classmethod里使用类的属性,而不是类的实例的属性( ...
- 阿尔法冲刺——Postmortem会议
设想与目标 1.我们软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 这个问题,我们觉得我们的软件目标还是比较明确的,在SRS中也给出了典型用户和典型场景的清晰的描述. 2 ...
- Alpha冲刺No.6
站立式会议 继续页面设计 在安卓内构件数据库相应类 解决摄像头.照片的使用的异常问题 二.实际项目进展 页面设计完成百分80 类架构完成 在虚拟机中,能够完成摄像头的调用和程序的使用 三.燃尽图 四. ...
- 每日冲刺报告--Day2
敏捷冲刺每日报告--Day2 情况简介 今天我们三个人在一起开了会,分析了我们面临的情况以及下一阶段的计划.一个重大的改进是,我们准备把之前用txt文件格式存储订阅列表改成了文件json格式. 任务进 ...
- 算法第四版学习笔记之优先队列--Priority Queues
软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...
- 自主学习之RxSwift(一) -----Driver
对于RxSwift,我也是初学者,此系列来记录我学习RxSwift的历程! (一) 想必关于Drive大家一定在RxSwift的Demo中看到过,也一定有些不解,抱着一起学习的态度,来了解一下Driv ...
- Java 多线程 从无到有
个人总结:望对屏幕对面的您有所帮助 一. 线程概述 进程: 有独立的内存控件和系统资源 应用程序的执行实例 启动当前电脑任务管理器:taskmgr 进程是程序(任务)的执行过程,它持有资源(共享内存, ...
- css3动画transition详解2
transition主要包含四个属性值:执行变换的属性:transition-property,变换延续的时间:transition-duration,在延续时间段,变换的速率变化transition ...
- 【非官方】Surging 微服务框架使用入门
前言 本文非 Surging 官方教程,只是自己学习的总结.如有哪里不对,还望指正. 我对 surging 的看法 我目前所在的公司采用架构就是类似与Surging的RPC框架,在.NET 4.0框架 ...
- 看到一个对CAP简单的解释
一个分布式系统里面,节点组成的网络本来应该是连通的.然而可能因为一些故障,使得有些节点之间不连通了,整个网络就分成了几块区域.数据就散布在了这些不连通的区域中.这就叫分区.当你一个数据项只在一个节点中 ...