【Luogu4137】Rmq Problem/mex (莫队)

题面

洛谷

题解

裸的莫队

暴力跳\(ans\)就能\(AC\)

考虑复杂度有保证的做法

每次计算的时候把数字按照大小也分块

每次就枚举答案在哪一块里面就好

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 220000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,blk;
struct Query{int l,r,blk,id;}q[MAX];
int cnt[MAX],ans=0;
int Ans[MAX],a[MAX];
int sum[MAX];
bool operator<(Query a,Query b)
{
if(a.blk!=b.blk)return a.blk<b.blk;
return a.r<b.r;
}
void work(int l,int w)
{
if(w==1)
{
cnt[a[l]]++;
if(cnt[a[l]]==1)sum[a[l]/450]++;
}
else
{
cnt[a[l]]--;
if(!cnt[a[l]])sum[a[l]/450]--;
}
}
int calc()
{
for(int i=0;i<=450;++i)
if(sum[i]!=450)
for(int j=0;j<=449;++j)
if(!cnt[i*450+j])return i*450+j;
}
int main()
{
n=read();m=read();blk=sqrt(n);
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=m;++i)q[i].l=read(),q[i].r=read(),q[i].id=i,q[i].blk=(q[i].l-1)/blk+1;
sort(&q[1],&q[m+1]);
int l=1,r=0;
for(int i=1;i<=m;++i)
{
while(r<q[i].r)work(++r,1);
while(r>q[i].r)work(r--,-1);
while(l<q[i].l)work(l++,-1);
while(l>q[i].l)work(--l,1);
Ans[q[i].id]=calc();
}
for(int i=1;i<=m;++i)
printf("%d\n",Ans[i]);
return 0;
}

【Luogu4137】Rmq Problem/mex (莫队)的更多相关文章

  1. BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)

    P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...

  2. P4137 Rmq Problem / mex (莫队)

    题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...

  3. 【luogu4137】 Rmq Problem / mex - 莫队

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 思路 莫队水过去了 233 #include <bits/stdc++.h> ...

  4. 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex

    题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...

  5. Luogu4137 Rmq problem/mex 主席树

    传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...

  6. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  7. 洛谷 P4137 Rmq Problem /mex 解题报告

    P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...

  8. BZOJ3339&&3585 Rmq Problem&&mex

    BZOJ3339&&3585:Rmq Problem&&mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最 ...

  9. [bzoj3585] Rmq Problem / mex

    [bzoj3585] Rmq Problem / mex bzoj luogu 看上一篇博客吧,看完了这个也顺理成章会了( (没错这篇博客就是这么水) #include<cstdio> # ...

随机推荐

  1. 保存文件名至txt文件中,不含后缀

    准备深度学习的训练数据时,可能会用到将图片文件名保存到txt文件中,所以用python实现了该功能.输入参数只设了两个,图片存放路径,和输出的txt文件名. 代码里写死了只识别.jpg格式,并不进行目 ...

  2. java处理json与对象的转化 递归

    整个类是一个case,总结了我在使用java处理json的时候遇到的问题,还有级联关系的对象如何遍历,json和对象之间的转换! 对于对象json转换中遇到的问题我参考了一篇博客,http://blo ...

  3. setfacl命令 来自: http://man.linuxde.net/setfacl

    常用选项##### <pre>-b,--remove-all:删除所有扩展的acl规则,基本的acl规则(所有者,群组,其他)将被保留. -k,--remove-default:删除缺省的 ...

  4. zabbix如何监控进程

    zabbix中item的配置如下: zabbix中trigger的配置如下:

  5. thinkphp5判断移动或pc端访问并调用不同模板

    废话不多说,直接上代码 先修改\thinkphp\library\think\view\driver\Think.php文件 把 public function __construct($config ...

  6. ASP.NET Core的身份认证框架IdentityServer4--(4)添加第三方快捷登录

    添加对外部认证的支持 接下来我们将添加对外部认证的支持.这非常简单,因为你真正需要的是一个兼容ASP.NET Core的认证处理程序. ASP.NET Core本身也支持Google,Facebook ...

  7. MySQL安装与使用过程中的相关问题

    数据库远程连接拒绝访问解决办法: 1. 改表法.可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑,登入mysql后,更改 "mysql&q ...

  8. SpringBoot Hello World

    本文首发于我的github博客 前言 SpringBoot是Spring MVC升级版,基于『约定优于配置』的原则,快速开发出web程序. 环境 本系列笔记环境如下: Sun JDK1.8.0_20 ...

  9. poj 3278 简单BFS

    题意:给定农夫和奶牛的初始位置,农夫可以当前位置+1.-1.*2三种移动方式,问最少需要多少分钟抓住奶牛 AC代码: #include<cstdio> #include<cstrin ...

  10. 生活常用类API调用的代码示例合集:邮编查询、今日热门新闻查询、区号查询等

    以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 邮编查询:通过邮编查询地名:通过地名查询邮编 今日热门新闻查询:提 ...