1406 与查询

题目来源: CodeForces
基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 

有n个整数。输出他之中和x相与之后结果为x的有多少个。x从0到1,000,000

Input
第一行输入一个整数n。(1<=n<=1,000,000).
第二行有n个整数a[0],a[1],a[2],...a[n-1],以空格分开.(0<=a[i]<=1,000,000)
Output
对于每一组数据,输出1000001行,第i行对应和i相与结果是i的有多少个数字。
Input示例
3
2 3 3
Output示例
3
2
3
2
0
0
……
后面还有很多0
/*
51 nod 1406 与查询 problem:
有n个整数。输出他之中和x相与之后结果为x的有多少个。x从0到1000000 solve:
如果x与a[i]相与之后为x,那么x必定是a[i]二进制中1的组合.
所以就成了快速求x中1的所有组合. 最开始是枚举x,然后从高位到低位枚举. cnt[i - (1 << j)] += cnt[i];
但是有的时候会出现重复,比如: 1011.
循环置换一下就好了 hhh-2016/09/09-16:19:21
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <stdio.h>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const ll mod = 1000000007;
const int maxn = 1001000;
const double PI = acos(-1.0);
const int limit = 33; template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} int cnt[maxn]; int main()
{
int n,Max,x;
clr(cnt,0);
read(n);
Max = 0;
for(int i = 1; i <=n; i++)
{
read(x),Max = max(x,Max);
cnt[x] ++ ;
}
int begi = min(1000001,Max);
// cnt[0] = n;
for(int j = 20; j >= 0 ; j --)
{
for(int i = 1; i <= begi; i++)
{
if(i & (1 << j))
{
cnt[i - (1 << j)] += cnt[i];
}
}
}
cnt[0] = n;
for(int i = 0;i <= 1000000;i ++)
print(cnt[i]);
// for(int i = 0; i <= 10; i ++)
// print(cnt[i]);
return 0;
}

  

51 nod 1406 与查询的更多相关文章

  1. 51 NOD 1406 and query

    我们知道一个数S会对所有它的子集S'产生1的贡献,但是我们直接枚举子集是 3^(log2 1000000)的,会炸掉:如果直接把每个有1的位变成0往下推也会凉掉,因为这样会有很多重复的. 但是我们发现 ...

  2. 51 nod 1439 互质对(Moblus容斥)

    1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...

  3. 51 nod 1427 文明 (并查集 + 树的直径)

    1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...

  4. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  5. 51 nod 1495 中国好区间

    1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是& ...

  6. 51 nod 1055 最长等差数列(dp)

    1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列.     例如:1 3 5 6 8 9 ...

  7. 51 nod 1421 最大MOD值

    1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...

  8. 51 nod 1681 公共祖先 (主席树+dfs序)

    1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另 ...

  9. 51 nod 1766 树上的最远点对(线段树+lca)

    1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题   n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...

随机推荐

  1. Java暑假作业

    一.电影观后感 电影<摔跤吧!爸爸>观后感 二.下学期的计划与目标 大一学年总结: 参与了大大小小的学院活动,例如机器人搭建.辩论赛,也参加了学生会的部门,参与了组织活动.通过参与活动获 ...

  2. XP实验报告

    实验名称:敏捷开发与XP实践 实验人员:20162309邢天岳(结对搭档20162313苑洪铭) 实验日期:2017.5.5 实验内容:1.在IDEA中使用工具(Code->Reformate ...

  3. 【iOS】Swift ?和 !(详解)

    Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值, 也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化 .如果在使用变量之前不进行初始化就会报错: [ ...

  4. 关于GPUImage的导入

    对于GPUImage的使用方面,GitHub上已经非常详细了,就不一一赘述了,但是对于项目的导入来说,最好的方式是 1.下载GPUImage并解压 2.打开压缩包后如图 3.打开终端,cd到此目录 4 ...

  5. Scala Option类型

    转载自: Scala 初学者指南, 这里有一系列很棒的文章 类型 Option 可能你已经见过它在 Map API 中的使用:在实现自己的提取器时,我们也用过它, 然而,它还需要更多的解释. 你可能会 ...

  6. Entity Framework Core Code First

    参考地址:https://docs.microsoft.com/zh-cn/ef/core/get-started/aspnetcore/new-db

  7. php中函数和方法的区别

    php的方法就是定义在类里面的方法,一般不建议在方法内部定义方法,但是这种也可以这种叫做内部方法,一般只能本方法调用. 如果定义在同一个类中的方法,在同类的其他方法中调用是$this->方法名就 ...

  8. Spring Security 入门(1-1)Spring Security是什么?

    1.Spring Security是什么? Spring Security 是一个安全框架,前身是 Acegi Security , 能够为 Spring企业应用系统提供声明式的安全访问控制. Spr ...

  9. tar磁带归档

    一:压缩.解压 1.compress/uncompress/zcat -d:解压 -c:输出到终端,不删除原文件 -v:显示详细信息 2.gzip/ungzip/zcat -d:解压 -c:将压缩或解 ...

  10. Java-Maven(八):IDEA使用本地maven,并配置远程中央仓库

    声明:已经安装了maven,安装请参考:<Java-Maven(一):Maven的简介与安装> 1)一般我们从github.码云(https://gitee.com)上获取代码后,实际上我 ...