●BZOJ 4407 于神之怒加强版
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4407
题解:
莫比乌斯反演
直接套路化式子
$\begin{align*}ANS&=\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)^k(接下来先枚举gcd的值g,然后求出有多少对(i,j)的gcd=g) \\&=\sum_{g=1}^{min(n,m)}g^k\sum_{d=1}{\frac{n}{g}\mu(d)\lfloor \frac{n}{gd} \rfloor \lfloor \frac{m}{gd} \rfloor}\\ &=\sum_{D=gd=1}^{min(n,m)} \lfloor \frac{n}{D} \rfloor \lfloor \frac{m}{D} \rfloor \sum_{g|D} g^k \mu(\frac{D}{g})\;(令f(D)=\sum_{g|D} g^k \mu(\frac{D}{g}))\\ &=\sum_{D=1}^{min(n,m)} \lfloor \frac{n}{D} \rfloor \lfloor \frac{m}{D} \rfloor f(D) \end{align*}$
如果处理出f(D)那么就可以在$O(\sqrt N)$ 的复杂度内解决每个询问。
因为 $w(x)=x^k 和 \mu(x)$都是积性函数,
所以由狄利克雷乘积的性质可知:
$\begin{align*} f(D)&=\sum_{g|D} g^k \mu(\frac{D}{g}) \\&=\sum_{g|D} w(g) \mu(\frac{D}{g}) \end{align*}$
亦是一个积性函数。
所以直接线筛就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 5000050
using namespace std;
const int mod=1000000007;
int f[MAXN],k;
int Pow(int a,int b){
int ret=1; a=(a%mod+mod)%mod;
while(b){
if(b&1) ret=1ll*ret*a%mod;
b>>=1; a=1ll*a*a%mod;
}
return ret;
}
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
f[1]=1;
for(int i=2,tmp,d;i<=5000000;i++){
if(!np[i]) prime[++pnt]=i,f[i]=(Pow(i,k)-1+mod)%mod;
for(int j=1;j<=pnt&&i<=5000000/prime[j];j++){
np[i*prime[j]]=1; tmp=i; d=prime[j];
while(tmp%prime[j]==0) tmp/=prime[j],d*=prime[j];
if(tmp!=1) f[tmp*d]=1ll*f[tmp]*f[d]%mod;
else f[d]=(1ll*Pow(d,k)-Pow(d/prime[j],k)+mod)%mod;
if(i%prime[j]==0) break;
}
}
for(int i=1;i<=5000000;i++) f[i]=(1ll*f[i]+f[i-1])%mod;
}
int main(){
int Case,n,m,mini,ans;
scanf("%d%d",&Case,&k);
Sieve();
while(Case--){
scanf("%d%d",&n,&m);
mini=min(n,m); ans=0;
for(int D=1,last;D<=mini;D=last+1){
last=min(n/(n/D),m/(m/D));
ans=(1ll*ans+1ll*(n/D)*(m/D)%mod*(((1ll*f[last]-f[D-1]+mod)%mod))%mod)%mod;
}
printf("%d\n",ans);
}
return 0;
}
●BZOJ 4407 于神之怒加强版的更多相关文章
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- BZOJ 4407 于神之怒加强版
http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题意: 给下N,M,K.求 思路: 来自:http://blog.csdn.net/ws_y ...
- bzoj 4407 于神之怒加强版——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...
- bzoj 4407 于神之怒加强版 —— 反演+筛积性函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 推导如这里:https://www.cnblogs.com/clrs97/p/5191 ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
随机推荐
- alpha-咸鱼冲刺day9
一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 大概差不多了.不过提交似乎又出了问题正在修改ing 四,问题困难 页面整合啥的凑合一下.因为后面跟着学长速成的PHP,现在还在研 ...
- 2017-2018-1 1623 bug终结者 冲刺003
bug终结者 冲刺003 by 王旌含 今日任务:优化界面布局,提供图片素材 需求 app图标.主界面图.主界面中按钮图:选择关卡图.关卡按键图:游戏中的小人.箱子.地板.墙.目的地:方向按钮:重置按 ...
- 百词斩APP分析
一.调研 1.第一次上手 第一次使用,可以使用微信和qq登录感觉挺不错的不然又要注册有点麻烦,在功能上,用户可以针对自身选择不同水平的英语背单词,然后有多钟方式对自己的听力和单词翻译进行提升.在u ...
- Linux学习--线程控制
关于线程控制,主要就是几个模块,我们一个一个消灭.消化: 一.线程创建: 1.先来看看在Linux环境下的线程创建函数: 分析:意思很明显: 1.函数名是 pthread_create : 2.功能 ...
- 【基础知识】Flex-弹性布局原来如此简单!!
简言 布局的传统解决方案是基于盒状模型,依赖 display + position + float 方式来实现,灵活性较差.2009年,W3C提出了一种新的方案-Flex,Flex是Flexible ...
- nyoj 黑色帽子
黑色帽子 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 最近发现了一个搞笑的游戏,不过目前还没玩过.一个舞会上,每个人头上都戴着一顶帽子,帽子只有黑 ...
- python-装饰器简述
装饰器是什么 用来修饰别的函数的函数就可以称之为装饰器 这种函数的参数一般就是另外一个函数 也就是说,调用这种函数,需要给这种函数传参,且参数是函数 @语法糖 @语法糖一般用来表示装饰器函数 不用@也 ...
- 09_Python定义方法_Python编程之路
有关Python判断与循环的内容我们上几节已经跟大家一起学习了,这一节我们主要针对def 做一个讲解 def 定义一个方法 在项目编程中,我们往往要做很多重复的事,比如一个排序的功能(当然Python ...
- django的模型类管理器-----------数据库操作的封装
模型实例方法 str():在将对象转换成字符串时会被调用. save():将模型对象保存到数据表中,ORM框架会转换成对应的insert或update语句. delete():将模型对象从数据表中删除 ...
- 相同域名不同端口的两个应用,cookie名字、路径都相同的情况下,会覆盖吗
首先答案是: 会的. 本地测试流程: 两个相同的应用,代码完全相同:只是部署在两个不同的tomcat:域名都是localhost 应用A:部署在http://localhost:8087/ 应用B:部 ...