●BZOJ 1855 [Scoi2010]股票交易
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1855
题解:
DP,单调队列优化。
(好久没做 DP题,居然还意外地想出来了)
定义 dp[i][k] 表示前 i天,手上还有 k股的最大收益。
(注意这个定义是个前缀的形式)
假设枚举到了第 i天,令 j=i-W-1。
那么dp[i][]就由dp[j][]转移而来。(说了是前缀形式的啦,就不要去枚举 j-1,j-2...了)
转移还是比较显然的:
枚举第 i 天结束手上还剩的股数 k:
枚举今日购买 d张:cmax(dp[i][k],dp[j][k-d]-d*AP);
枚举今日卖出 d张:cmax(dp[i][k],dp[j][k+d]+d*BP);
然后再来一个前缀的转移:cmax(dp[i][k],dp[i-1][k]);
这个复杂度是 T*MAXP*MAXP的,只能过 50分。
考虑优化(以购买转移为例),
显然转移的区间为连续的一段,
即若对于 dp[i][k]来说,转移来源是 dp[j][k-1]~dp[j][k-AS]。
且不难发现,如果 k-1>=x>y>=k-AS,且 dp[j][x] > dp[j][y]-val (val=(x-y)*AP),
那么如论如何dp[j][y]都不可能贡献答案。
所以就用单调队列维护每次转移的最值就好啦。
一个小技巧:在从 计算 dp[i][k] 到 计算 dp[i][k+1] 时,
显然单调队列里的旧元素的贡献相比刚刚加进队列的 newval=dp[j][k]来说都会减一个 AP,
但不好整体修改,(难道你想用数据结构维护?)
所以就令新加进队列的值 newval=dp[j][k]+k*AP,
保持好队列里的元素的相对大小关系就好了(即dp[j][k-1]始终比dp[j][k]多减了一个AP)。
(卖出的转移就类似了。)
最终复杂度可以做到 T*MAXP
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 2005
#define ll long long
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
ll dp[MAXN][MAXN],qv[MAXN],ANS,newval;
int T,MAXP,W,AP,BP,AS,BS,qk[MAXN];
void cmax(ll &a,ll b){
if(a<b) a=b;
}
int main()
{
filein(trade); fileout(trade);
memset(dp,0xcc,sizeof(dp)); dp[0][0]=0;
scanf("%d%d%d",&T,&MAXP,&W);
for(int i=1,j,l,r;i<=T;i++){ //2000
scanf("%d%d%d%d",&AP,&BP,&AS,&BS);
j=max(i-W-1,0);
for(int k=0;k<=MAXP;k++)//50->2000 //前缀形式,今日不做任何操作
cmax(dp[i][k],dp[i-1][k]);
l=1;r=1; qk[l]=0; qv[l]=dp[j][0];
for(int k=1;k<=MAXP;k++){//50->2000
//购置
//for(int d=1;d<=AS&&k-d>=0;d++) cmax(dp[i][k],dp[j][k-d]-1ll*d*AP);
while(l<=r&&k-qk[l]>AS) l++;
cmax(dp[i][k],dp[j][qk[l]]-1ll*(k-qk[l])*AP);
newval=dp[j][k]+1ll*k*AP;
while(l<=r&&qv[r]<=newval) r--;
r++; qk[r]=k; qv[r]=newval;
}
l=1;r=1; qk[l]=MAXP; qv[l]=dp[j][MAXP];
for(int k=MAXP-1;k>=0;k--){//50->2000
//出售
//for(int d=1;d<=BS&&k+d<=MAXP;d++) cmax(dp[i][k],dp[j][k+d]+1ll*d*BP);
while(l<=r&&qk[l]-k>BS) l++;
cmax(dp[i][k],dp[j][qk[l]]+1ll*(qk[l]-k)*BP);
newval=dp[j][k]-1ll*(MAXP-k)*BP;
while(l<=r&&qv[r]<=newval) r--;
r++; qk[r]=k; qv[r]=newval;
}
}
//for(int k=0;k<=MAXP;k++) cmax(ANS,dp[T][k]);
cout<<dp[T][0];
return 0;
}
●BZOJ 1855 [Scoi2010]股票交易的更多相关文章
- bzoj 1855: [Scoi2010]股票交易
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- BZOJ 1855 [Scoi2010]股票交易 ——动态规划
DP方程是比较简单的,主要有三种:什么都不做.买入.卖出. 发现买入卖出都是$\Theta (n^3)$但是转移方程都是线性的,而且决策和当前的情况是分开的. 所以可以单调队列优化. 复杂度$\The ...
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)
1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...
- 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569
题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...
- [BZOJ 1855] 股票交易
Link: BZOJ 1855 传送门 Solution: 比较明显的$dp$模型 令$dp[i][j]$为第$i$天持有$j$支股票时的最大利润 对其购买股票和售出股票分别$dp$,这里以购买为例: ...
- 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列
[BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...
- 洛谷P2569 [SCOI2010]股票交易
P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...
- [luogu] P2569 [SCOI2010]股票交易 (单调队列优化)
P2569 [SCOI2010]股票交易 题目描述 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\te ...
随机推荐
- 雷云Razer Synapse2.0使用测评 -第二次作业
雷蛇云驱动Razer Synapse2.0使用测评 雷蛇(Razer)是全球顶级游戏设备品牌之一,1998年由CEO Min-Liang Tan和Robert "Razerguy" ...
- zookeeper提示Unable to read additional data from server sessionid 0x
配置zookeeper集群,一开始配置了两台机器server.1和server.2. 配置参数,在zoo.cfg中指定了整个zookeeper集群的server编号.地址和端口: server.1=1 ...
- php中函数和方法的区别
php的方法就是定义在类里面的方法,一般不建议在方法内部定义方法,但是这种也可以这种叫做内部方法,一般只能本方法调用. 如果定义在同一个类中的方法,在同类的其他方法中调用是$this->方法名就 ...
- 第一次制作和使用图标字体-IcoMoon
开题:之前就有所耳闻,最近两天第一次运用到图标字体.刚开始嘛,一脸懵逼的状态.成功运用之后就来记录一下使用过程咯! 1. 打开在线生成工具:https://icomoon.io/app/#/selec ...
- vue-入门
数据绑定 <!--步骤1:创建html文件--> <!DOCTYPE html> <html lang="en"> <head> ...
- Python内置函数(31)——object
英文文档: class objectReturn a new featureless object. object is a base for all classes. It has the meth ...
- HTTP协议扫盲(六)InputStream的复用
一.问题提出 在进行网关引擎开发时,获取到一个http请求的inputstream后,可能要多次利用它进行read操作.由于流读过一次就不能再读了,所以需要实现InputStream的复制. 而Inp ...
- Linux之Shell命令
开始接触Linux命令行,学习Linux文件系统导航以及创建.删除.处理文件所需的命令. 注:文末有福利! 几个快捷键: Linux发行版通常使用Ctrl+Alt组合键配合F1~F7进入要使用的控制 ...
- Spring Data Jpa简单了解
原文来源:http://www.cnblogs.com/xuyuanjia/p/5707681.html 以下是自己简单整理原有文章,其实就是在原来文章基础上化重点以及可能会有所删减的方式进行整理,需 ...
- Java 高级开发必修知识---反射
Class类的使用 1) 在面向对象的世界里,万事万物皆对象 A. Java语言中,普通数据类型,静态成员不是对象,其他皆对象 B. 每一个类也是对象 C. 类是java.lang.Class类的实例 ...