Mart Master II

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 675    Accepted Submission(s): 237

Problem Description
Trader Dogy lives in city S, which consists of n districts. There are n - 1 bidirectional roads in city S, each connects a pair of districts. Indeed, city S is connected, i.e. people can travel between every pair of districts by roads.

In some districts there are marts founded by Dogy’s competitors. when people go to marts, they’ll choose the nearest one. In cases there are more than one nearest marts, they’ll choose the one with minimal city number.

Dogy’s money could support him to build only one new marts, he wants to attract as many people as possible, that is, to build his marts in some way that maximize the number of people who will choose his mart as favorite. Could you help him?

 
Input
There are multiple test cases. Please process till EOF.

In each test case:

First line: an integer n indicating the number of districts.

Next n - 1 lines: each contains three numbers bi, ei and wi, (1 ≤ bi,ei ≤ n,1 ≤ wi ≤ 10000), indicates that there’s one road connecting city bi and ei, and its length is wi.

Last line : n(1 ≤ n ≤ 105) numbers, each number is either 0 or 1, i-th number is 1 indicates that the i-th district has mart in the beginning and vice versa.

 
Output
For each test case, output one number, denotes the number of people you can attract, taking district as a unit.
 
Sample Input
5
1 2 1
2 3 1
3 4 1
4 5 1
1 0 0 0 1
5
1 2 1
2 3 1
3 4 1
4 5 1
1 0 0 0 0
1
1
1
0
 
Sample Output
2
4
0
1
/*
hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online) problem:
有n个城市,有的城市有集市. 城市会选择离他最近,编号最小的集市. 如果再建一个集市,那么最多有多少个城市会来这 solve:
如果 城市v的人要到新的集市u 那么dis(u,v) < dis(v,z).(z为原先离v最近的集市)
所以可以先用最短路求出所有城市的最近集市的距离和编号.
如果用dis表示到根节点的距离,那么 dis[u] + dis[v] < spfa(v,z) ----> dis[u] < dis[v]-spfa(v,z)
所以就成了:求对u而言满足这个公式的点的个数. hhh-2016-08-24 16:17:48
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 0x3f3f3f3f
#define mod 1000003
using namespace std;
const int maxn = 100010;
int head[maxn];
int n,k,s[maxn],f[maxn],root,is[maxn];
int Size,tot,u,v,w;
bool vis[maxn];
ll ans[maxn];
ll finans = 0;
ll val;
struct node
{
int to,w;
int next;
} edge[maxn << 2]; void ini()
{
clr(head,-1);
clr(s,0),clr(ans,0);
tot = 0;
} void add_edge(int u,int v,int w)
{
edge[tot].to = v,edge[tot].w = w,edge[tot].next = head[u],head[u] = tot++;
}
pair<int,int> tp[maxn]; void spfa()
{
memset(vis,0,sizeof(vis));
queue<int>q;
for(int i =1; i <= n; i++)
{
if(is[i])
{
tp[i] = make_pair(0,i);
vis[i] = 1;
q.push(i);
}
else
{
tp[i] = make_pair(inf,i);
}
}
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = 0;
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(tp[v].first > tp[u].first + edge[i].w)
{
tp[v].first = tp[u].first + edge[i].w;
tp[v].second = tp[u].second;
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
} void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now]; ~i; i = edge[i].next)
{
if((v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size-s[now]);
if(f[now] < f[root]) root = now;
}
int num;
int seq[maxn];
int d[maxn];
void dfs(int now,int fa)
{
int v;
seq[num++] = now;
s[now] = 1; for(int i = head[now]; ~i; i = edge[i].next)
{
// cout << edge[i].to << " " <<vis[edge[i].to]<<" " << fa <<endl;
if( (v=edge[i].to) == fa || vis[v])
continue;
d[v] = d[now] + edge[i].w;
dfs(v,now);
s[now] += s[v];
}
}
pair<int,int>t[maxn];
void cal(int now,int ob)
{
num = 0;
d[now] = ob;
dfs(now,0);
// cout <<"root:" << now <<endl;
for(int i=0; i < num; i++)
{
// cout << tp[seq[i]].first-d[seq[i]] << " ";
t[i] = make_pair(tp[seq[i]].first-d[seq[i]],tp[seq[i]].second);
}
// cout <<endl;
// for(int i = 0;i < num ;i++)
// {
// cout << d[seq[i]] << " ";
// }
// cout <<endl;
sort(t,t+num); for(int i = 0; i < num; i++)
{
if(is[seq[i]])
continue;
pair<int,int> temp = make_pair(d[seq[i]],seq[i]);
int pos = lower_bound(t,t+num,temp)-t;
// cout << num <<" " <<pos <<endl;
if(!ob)
ans[seq[i]] += (ll)(num - pos);
else
ans[seq[i]] += (ll)(pos - num);
}
} void make_ans(int now,int cnt)
{
int v ;
f[0] = Size = cnt;
get_root(now,root = 0); cal(root,0);
vis[root] = 1;
for(int i = head[root]; ~i ; i = edge[i].next)
{
if( vis[v = edge[i].to] )
continue;
cal(v,edge[i].w);
make_ans(v,s[v]);
}
} int main()
{
// freopen("in.txt","r",stdin);
while( scanfi(n) != EOF)
{
ini();
finans = 0;
for(int i = 1; i < n; i++)
{
scanfi(u),scanfi(v),scanfi(w);
add_edge(u,v,w);
add_edge(v,u,w);
}
for(int i =1; i<= n; i++)
scanfi(is[i]);
spfa();
// for(int i = 1;i <= n;i++)
// {
// printf("%d %d\n",tp[i].first,tp[i].second);
// }
memset(vis,0,sizeof(vis));
make_ans(1,n);
for(int i = 1;i <=n;i++)
{
finans = max(finans,ans[i]);
}
// cout <<"ans";
printf("%I64d\n",finans);
}
return 0;
}

  

hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)的更多相关文章

  1. HDU 5010 Get the Nut(2014 ACM/ICPC Asia Regional Xi'an Online)

    思路:广搜, 因为空格加上动物最多只有32个那么对这32个进行编号,就能可以用一个数字来表示状态了,因为只有 ‘P’   'S' 'M' '.' 那么就可以用4进制刚好可以用64位表示. 接下去每次就 ...

  2. 2014 ACM/ICPC Asia Regional Xi'an Online(HDU 5007 ~ HDU 5017)

    题目链接 A题:(字符串查找,水题) 题意 :输入字符串,如果字符串中包含“ Apple”, “iPhone”, “iPod”, “iPad” 就输出 “MAI MAI MAI!”,如果出现 “Son ...

  3. 2014 ACM/ICPC Asia Regional Xi'an Online

    03 hdu5009 状态转移方程很好想,dp[i] = min(dp[j]+o[j~i]^2,dp[i]) ,o[j~i]表示从j到i颜色的种数. 普通的O(n*n)是会超时的,可以想到o[]最大为 ...

  4. 2014 ACM/ICPC Asia Regional Xi'an Online Paint Pearls

    传说的SB DP: 题目 Problem Description Lee has a string of n pearls. In the beginning, all the pearls have ...

  5. HDU 5000 2014 ACM/ICPC Asia Regional Anshan Online DP

    Clone Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total Submiss ...

  6. HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029 Problem Description The soil is cracking up beca ...

  7. HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description You are given a tree with N nodes which are numbered by integers 1..N. Each node ...

  8. HDU 5000 Clone(离散数学+DP)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description After eating food from Chernobyl, DRD got a super power: he could clone himself ...

  9. HDU 5052 Yaoge’s maximum profit 光秃秃的树链拆分 2014 ACM/ICPC Asia Regional Shanghai Online

    意甲冠军: 特定n小点的树权. 以下n每一行给出了正确的一点点来表达一个销售点每只鸡价格的格 以下n-1行给出了树的侧 以下Q操作 Q行 u, v, val 从u走v,程中能够买一个鸡腿,然后到后面卖 ...

随机推荐

  1. logging日志

    import logging logging.basicConfig(filename='log.log', format='%(asctime)s - %(name)s - %(levelname) ...

  2. 创建带缩进的XML

    from xml.etree import ElementTree as ET from xml.dom import minidom root = ET.Element('}) son=ET.Sub ...

  3. 一、Django的基本用法

    学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...

  4. 部分和问题 nyoj

    部分和问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K.   输入 首先, ...

  5. mongodb监控工具mongostat

    mongostat的使用及命令详解 mongostat是mongodb自带的状态检测工具,在命令行下使用,会间隔固定时间获取mongodb的当前运行状态,并输出. 1.常用命令格式: mongosta ...

  6. JAVA_SE基础——50.接口关系下的多态

    接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口  变量  = ...

  7. OpenShift实战(三):OpenShift持久化存储Registry

    1.查看Registry组件的DC关于volume的定义 可以看到registry-storage这个挂载点被指向了一个/registry目录,使用的是empty directory,即数据保存在计算 ...

  8. Python内置函数(48)——__import__

    英文文档: __import__(name, globals=None, locals=None, fromlist=(), level=0) This function is invoked by ...

  9. PV 动态供给 - 每天5分钟玩转 Docker 容器技术(153)

    前面的例子中,我们提前创建了 PV,然后通过 PVC 申请 PV 并在 Pod 中使用,这种方式叫做静态供给(Static Provision). 与之对应的是动态供给(Dynamical Provi ...

  10. nohup 与 & 的区别

    nohup -- invoke a utility immune to hangups : 运行命令忽略挂起信号 & 是指后台运行: nohup 的功能和& 之间的功能并不相同.其中, ...