一道比较NB的套路题。

Description

  NBA每年都有球员选秀环节。通常用速度和身高两项数据来衡量一个篮球运动员的基本素质。假如一支球队里速度最慢的球员速度为minV,身高最矮的球员高度为minH,那么这支球队的所有队员都应该满足: A * ( height – minH ) + B * ( speed – minV ) <= C 其中A和B,C为给定的经验值。这个式子很容易理解,如果一个球队的球员速度和身高差距太大,会造成配合的不协调。 请问作为球队管理层的你,在N名选秀球员中,最多能有多少名符合条件的候选球员。

Input

  第一行四个数N、A、B、C 下接N行每行两个数描述一个球员的height和speed。

Output

  最多候选球员数目。

Sample Input

  4 1 2 10
  5 1
  3 2
  2 3
  2 1

Sample Output

  4

HINT

  1 <= N <= 5000,0<= height,speed <= 10000,A、B、C在长整型以内且为正数。

Solution

  最暴力的O(n^3)做法就是枚举minH和minV,加入满足条件的点即可。

  我们试着优化一下:

  一看到n=5000,肯定是n^2的做法,因此我们有枚举minH和minV其中一个的余地,所以还是枚举minV,把speed[i]<minV的点去除。

  然后我们把式子转化一下:

    

    

    

  由于我们枚举了minV,所以minV可以看做是一个常数,设C'=C+B*minV。

    

  这就很有意思,我们设X[i]=height[i],Y[i]=A*height[i]+B*speed[i]。于是每个运动员就对应平面直角坐标系中的点(X[i],Y[i])。

  当我们枚举minH的时候,就相当于在问有多少个点(X[i],Y[i])满足:

    ,这就是一个二维数点问题。

  把这些点按照X[i]排序从大到小加点,用(离散化加上)树状数组维护Y[i],就可以得到一个O(n^2logn)的做法。

  虽然时间复杂度爆炸但是小C才不会告诉你小C用这个做法过了该题。

  但是我们注意到随着minH的减小,A*minH+C'也是不断减小的,(A>0,虽然原题没说但是就算A为负数也是同理的做法)。

  所以我们把这些点不仅按X[i]排序,还要按Y[i]排序,用两个指针维护,按X[i]从大到小加点,并按Y[i]从大到小删点。

  再加上我们对这些点使用排序时用上插入排序,就可以得到一个O(n^2)的做法。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MN 5003
using namespace std;
struct meg{int x,z; ll y;}a[MN];
int c1[MN],c2[MN];
bool u[MN];
int n,A,B,C,ans,tp1,tp2; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} void solve(ll CX)
{
register int i,j,k,sum=;
ll lt;
for (i=tp1,k=tp2;i;i=j)
{
lt=1LL*A*a[c1[i]].x+CX;
for (j=i;j&&a[c1[j]].x==a[c1[i]].x;--j)
if (a[c1[j]].y<=lt) ++sum,u[c1[j]]=true;
for (;k&&a[c2[k]].y>lt;--k)
if (u[c2[k]]) --sum,u[c2[k]]=false;
ans=max(ans,sum);
}
for (;k;--k) if (u[c2[k]]) u[c2[k]]=false;
} void isort1(int ax)
{
register int i,j;
for (i=;i<=tp1;++i)
if (a[ax].x<a[c1[i]].x) break;
++tp1;
for (j=tp1;j>i;--j) c1[j]=c1[j-];
c1[i]=ax;
}
void isort2(int ax)
{
register int i,j;
for (i=;i<=tp2;++i)
if (a[ax].y<a[c2[i]].y) break;
++tp2;
for (j=tp2;j>i;--j) c2[j]=c2[j-];
c2[i]=ax;
}
bool cmp1(const meg& a,const meg& b) {return a.z<b.z;} int main()
{
register int i,j;
n=read(); A=read(); B=read(); C=read();
for (i=;i<=n;++i)
{
a[i].x=read(); a[i].z=read();
a[i].y=1LL*a[i].x*A+1LL*a[i].z*B;
}
sort(a+,a+n+,cmp1);
for (i=n;i;i=j)
{
for (j=i;j&&a[j].z==a[i].z;--j)
isort1(j),isort2(j);
solve(1LL*a[i].z*B+C);
}
printf("%d",ans);
}

Last Word

  小C的O(n^2logn)做法(BZOJ上总时限为3s):

  O(n^2)做法(对比):

  常数小就是舒服.jpg

[BZOJ]1071 组队(SCOI2007)的更多相关文章

  1. BZOJ 1071组队

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1071 题目很好,居然写了很久,题解找了真多: 主要两种做法: O(n^2lgn),通过优先 ...

  2. BZOJ 1071 [SCOI2007]组队

    1071: [SCOI2007]组队 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1330  Solved: 417[Submit][Status][ ...

  3. BZOJ.1071.[SCOI2007]组队(思路)

    题目链接 三个限制: \(Ah-AminH+Bv-BminV\leq C\ \to\ Ah+Bv\leq C+AminH+BminV\) \(v\geq minV\) \(h\geq minH\) 记 ...

  4. 【BZOJ】1070: [SCOI2007]修车

    1070: [SCOI2007]修车 Description 同 一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需 ...

  5. BZOJ 1066 【SCOI2007】 蜥蜴

    Description 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为$1$,蜥蜴的跳跃距离是d,即蜥蜴可以跳 ...

  6. 【BZOJ】1074: [SCOI2007]折纸origami

    http://www.lydsy.com/JudgeOnline/problem.php?id=1074 题意:一开始有一个左上角是(0,100),右下角是(100,0)的纸片,现在可以沿有向直线折n ...

  7. 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...

  8. 【BZOJ】1070: [SCOI2007]修车(费用流+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1070 好神的题!!!orz 首先我是sb不会拆点..... 首先,每一个技术人员维修车辆都有一个先后 ...

  9. 【BZOJ】1067: [SCOI2007]降雨量(rmq+变态题)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1067 好不爽,弄了一个晚上. 好不爽. 还是照着别人程序拍着看的!!! 噗 这题很变态. 首先,我没 ...

随机推荐

  1. JAVA接口基础知识总结

    1:是用关键字interface定义的. 2:接口中包含的成员,最常见的有全局常量.抽象方法. 注意:接口中的成员都有固定的修饰符. 成员变量:public static final     成员方法 ...

  2. 【基础知识】Flex-弹性布局原来如此简单!!

    简言 布局的传统解决方案是基于盒状模型,依赖 display + position + float 方式来实现,灵活性较差.2009年,W3C提出了一种新的方案-Flex,Flex是Flexible ...

  3. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

  4. python 3.x 爬虫基础---常用第三方库(requests,BeautifulSoup4,selenium,lxml )

    python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 python 3.x 爬虫基础---常用第三方库 ...

  5. 一、Django的基本用法

    学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...

  6. Comet之SSE(Server - Sent - Envent,服务器发送事件)

    1.SSE API 先要创建一个新的EventSource对象,并传进一个入口点: var source = new EventSource("myenvent.php"); △: ...

  7. 深入理解java的static关键字

    static关键字是很多朋友在编写代码和阅读代码时碰到的比较难以理解的一个关键字,也是各大公司的面试官喜欢在面试时问到的知识点之一.下面就先讲述一下static关键字的用法和平常容易误解的地方,最后列 ...

  8. JAVA_SE基础——22.面向对象的概念

    我写博客是为了提升自己和为了进入黑马程序员学习,还有分享些自己的心得给大家,希望能帮助大家学习JAVA. 我是自学的,如果写的有错误或者能更好的修改的请提出. 在这里我先引用下<think in ...

  9. selenium的Python使用(一)浏览器驱动的安装及使用

    一.selenium的安装 直接使用pip进行安装 pip install selenium    #(安装最新版本) pip install selenium==3.6.0   #(安装指定版本) ...

  10. 你考虑清楚了吗就决定用 Bootstrap ?

    近年来,在前端项目中, Bootstrap 已经成为了一个非常受欢迎的工具. Bootstrap 的确有很多优点,然而,如果你的团队中恰好有一个专职的前端工程师.那我推荐你们不要使用 Bootstra ...