[BZOJ]4644: 经典傻逼题
某天我觉得一切题目都是那么不可做,于是百度了一下“傻逼题”……
题目大意:对于图中的任意一个点集(可以为空或者全集),所有恰好有一个端点在这个点集中的边组成的集合被称为割。一个割的权值被定义为所有在这个割上的边的异或和。现在有一张一开始只有n个点的图,m次操作,每次加入一条边并询问当前最大的割的权值。(n<=500,m<=1000,边权用二进制表示,二进制数长度L<=1000)
思路:把选割看成把图分成两部分,“脚踏两只船”的边就是割,考虑选每个点的贡献,实际上就是使答案异或上连向这个点的所有边的异或和,这样每条边如果两端点都选或都不选贡献为0,只有一个选贡献就是这个边权。问题转化成n个数,一开始都是0,每次把其中两个异或上一个数,询问当前最大的子集异或和。考虑用线性基解决,由于线性基只支持插入,我们用线段树分治解决。暴力计算二进制数复杂度有点大,用bitset加速即可。总复杂度O(mlogm*L^2/32)。
#include<cstdio>
#include<cstring>
#include<vector>
#include<bitset>
using namespace std;
inline int read()
{
int x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=(x<<)+(x<<)+c-'';
return x;
}
#define MN 500
#define ML 1000
bitset<ML> a[MN+],w,z[ML+],ans[ML+];
struct node{int l,r;vector<bitset<ML> > v;}t[ML*+];
char s[ML+];
int l[MN+];
vector<int> v[ML*+];
void build(int k,int l,int r)
{
if((t[k].l=l)==(t[k].r=r))return;
int mid=l+r>>;
build(k<<,l,mid);build(k<<|,mid+,r);
}
void ins(int k,int l,int r,bitset<ML>&x)
{
if(t[k].l==l&&t[k].r==r){t[k].v.push_back(x);return;}
int mid=t[k].l+t[k].r>>;
if(r<=mid)ins(k<<,l,r,x);
else if(l>mid)ins(k<<|,l,r,x);
else ins(k<<,l,mid,x),ins(k<<|,mid+,r,x);
}
void dfs(int x)
{
int i,j;
for(i=;i<t[x].v.size();++i)
for(j=ML;j--;)if(t[x].v[i][j])
if(z[j][j])t[x].v[i]^=z[j];
else{z[j]=t[x].v[i];v[x].push_back(j);break;}
if(t[x].l<t[x].r)dfs(x<<),dfs(x<<|);
else for(j=ML;j--;)if(!ans[t[x].l][j]&&z[j][j])ans[t[x].l]^=z[j];
for(i=;i<v[x].size();++i)z[v[x][i]].reset();
}
int main()
{
int n,m,i,j,k,x,y;
read();n=read();m=read();
build(,,m);
for(i=;i<=m;++i)
{
x=read();y=read();scanf("%s",s);k=strlen(s)-;
for(j=;j<=k;++j)w[k-j]=s[j]-'';for(;j<ML;++j)w[j]=;
if(l[x]+<i)ins(,l[x]+,i-,a[x]);a[x]^=w;l[x]=i-;
if(l[y]+<i)ins(,l[y]+,i-,a[y]);a[y]^=w;l[y]=i-;
}
for(i=;i<=n;++i)if(l[i]<m)ins(,l[i]+,m,a[i]);
dfs();
for(i=;i<=m;++i)
{
for(j=ML;--j;)if(ans[i][j])break;
for(;j>=;--j)x=ans[i][j],printf("%d",x);puts("");
}
}
[BZOJ]4644: 经典傻逼题的更多相关文章
- BZOJ4644: 经典傻逼题【线段树分治】【线性基】
Description 这是一道经典傻逼题,对经典题很熟悉的人也不要激动,希望大家不要傻逼. 考虑一张N个点的带权无向图,点的编号为1到N. 对于图中的任意一个点集 (可以为空或者全集),所有恰好有一 ...
- BZOJ4644 : 经典傻逼题
设每个点的权值为和它相连的所有边的权值的异或和,那么等价于选若干个点,使得点权异或和最大,这显然只需要维护一组线性基,然后从高位到低位贪心选取即可. 对于本题,因为有修改操作,所以考虑按时间分治,并用 ...
- BZOJ 2222: [Cqoi2006]猜数游戏【神奇的做法,傻逼题,猜结论】
2222: [Cqoi2006]猜数游戏 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 604 Solved: 260[Submit][Status ...
- BZOJ-1625 宝石手镯 01背包(傻逼题)
傻逼题,懒得打,复制蛋蛋的.. 1625: [Usaco2007 Dec]宝石手镯 Time Limit: 5 Sec Memory Limit: 64 MB Submit: 1076 Solved: ...
- Codeforces Gym 100338I TV Show 傻逼DFS,傻逼题
Problem I. TV ShowTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest ...
- BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】
LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...
- Codeforces Round #303 (Div. 2) D. Queue 傻逼题
C. Woodcutters Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/probl ...
- BZOJ2761: [JLOI2011]不重复数字【set】【傻逼题】
Description 给出N个数,要求把其中重复的去掉,只保留第一次出现的数. 例如,给出的数为1 2 18 3 3 19 2 3 6 5 4,其中2和3有重复,去除后的结果为1 2 18 3 19 ...
- UVA11019 Matrix Matcher【hash傻逼题】【AC自动机好题】
LINK1 LINK2 题目大意 让你在一个大小为\(n*m\)的矩阵中找大小是\(x*y\)的矩阵的出现次数 思路1:Hash hash思路及其傻逼 你把一维情况扩展一下 一维是一个bas,那你二维 ...
随机推荐
- verilog学习笔记(1)_两个小module
第一个小module-ex_module module ex_module( input wire sclk,//声明模块的时候input变量一定是wire变量 input wire rst_n,// ...
- 使用genstring和NSLocalizedString实现App文本的本地化
OS提供了简便的方法来实现本地化,其中用的最多的就是NSLocalizedString. 首先查看下NSLocalizedString是什么: #define NSLocalizedString(ke ...
- 【iOS】字号问题
一,ps和pt转换 px:相对长度单位.像素(Pixel).(PS字体) pt:绝对长度单位.点(Point).(iOS字体) 公式如下: pt=(px/96)*72. 二,字体间转换 1in = 2 ...
- img加载卡顿,解决办法
我觉得我在这个项目里遇到了太多的第一次.比如上一篇博文:在在360.UC等浏览器,img不加载原因. 当前情况是:图片加载缓慢,图片加载时出现卡顿. 上图:我缩放了图片,估计有点变形.能说明情况就行, ...
- ssh框架-Struts2(二)
上篇文章我们了解了怎么配置struts.xml文件,以及前端控制器配置怎么配置,,Action进阶,Result结果配置,Struts2中的Servlet的API的访问,以及怎么获得请求参数.今天我们 ...
- ArrayList、Vector、LinkedList、HashMap、HashTable的存储性能和特性
ArrayList和Vector都是使用数组方式存储数据,次数组元素大于实际存储的数据以便添加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数 ...
- apollo1.7.1初探(二)使用apollo订阅主题,发布主题消息
一.MQTT协议配置 为了使用MQTT协议,首先使用MQTT3.1协议的客户端连接到Apollo正在监听端口.Apollo会做协议检测,而且自动识别MQTT连接,而且将连接作为MQTT协议处理. 你不 ...
- 新概念英语(1-19)Tired and thirsty
新概念英语(1-19)Tired and thirsty Why do the children thank their mother? A:What's the matter, children? ...
- Homebrew update error not work on OSX
brew update 错误是这样的 chown: /usr/local: Operation not permitted 然后网上osx 10.11, 10.12的解决方法这样的 The probl ...
- spring4——IOC之基于注解的依赖注入(DI )
spring容器对于Bean的创建和对象属性的依赖注入提供了注解的支持,让我们在开发中能够更加便捷的实现对象的创建和对象属性的依赖注入.一,对于Bean的创建spring容器提供了以下四个注解的支持: ...