数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~》》_《《~
咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!!
Begin !
~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不重要,重要的她代表的含义,其实呢,gcd(a,b)就表示 非负整数 a 和 b(不同时为0) 的最大公约数,(数论概论上说:计算 a 与 b 的最大公因数的更低效方法是我女儿四年级老师教的方法,老师要求学生求出 a 与 b 的所有因数,然后找出同时出现在两个表中的最大数字。 YES!A good idea for 小学生!) 。如今呢,我们自然不能这样算啦!
好吧!从求 gcd (a,b) 开始!
一般的有下列式子:
a = b * q1 + R1 ;
b = R1 *q2 + R2 ;
R1 = R2 * q3 + R3 ;
R2 = R3 * q4 + R4 ;
。。。。。。
。。。。。。
这样写下去什么时候才是个头啊~_~。。。
很显然 必然会有结束的地方的,因为肯定会有一个 R 为 0 (R2 >= R4 >= R6 ....,R1 >= R3 >= R5 ...),好吧,继续往下写:
Rn-1 = Rn * qn+1 + Rn+1 ;
Rn = Rn+1 * qn+2 + Rn+2 ;假设 Rn+2 == 0
。。。。。。。。。。。。。 ok!^_^ 。。。。。。。。。。。。。。
Rn+2 = 0了,那么由最后一个式子得 Rn+1整除Rn,接着,Rn+1 整除 Rn-1,,,,很显然的,这个递推可以推到第一个式子,so,Rn+1 整除 a,Rn+1 整除 b, 也就是说 Rn+1 是 a 与 b 的公约数了,是不是最大的呢?先把 Rn+1 记为 g,设 d 为 a 与 b 的任意一个公约数,由第一个
式子(a = b * q1 + R1)可以知道,d 整除 R1 ,再代入到第二个式子里得, d 整除 R2,推啊推,推啊推,最后知道了 d 整除 Rn+1,即 d 整除 g,
因为 d 是任意的公约数 , d 整除 g ,那么 取 d 为 最大公约数,则 g 既是公约数,又是最大公约数的倍数,只能是 :g 就是最大公约数。
在前面“,,,,递推 。。”里隐藏了一个惊天大秘密,那就是 gcd(a,b) = gcd(b,a%b),这个秘密啊,十分的奇妙!为啥有这个结论呢?从第一个式子(a = b * q1 + R1) 显然, gcd (a,b) = g; 再显然 gcd(b,r1) = g ; 。。。。。 显然嘛,gcd (a,b) = gcd(b,a%b),
。。。。。。。。。。。ok。这个问题算是解决了。代码附上。。。。。。。。。。。。。。。。。。。
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b) ;
}
gcd
~2~,好吧,其实前面只是闲扯!不过我可以赌五毛钱前面的东西没有偏题!
下面来正面解决这个问题:a*x + b*y = gcd(a,b) ;
一般的有下列式子:
a = b * q1 + R1 ; R1 = a - q1 * b ;
b = R1 *q2 + R2 ; R2 = b - q2 * R1 ;
R1 = R2 * q3 + R3 ; R3 = R1 - q3 * R2 ;
R2 = R3 * q4 + R4 ;
。。。。。。
值得注意的是右边的式子。可以发现每一个 R 都可以表示成 a 和 b 的倍数(把R1记作 (1,-q1)),可以定义一个结构体 A, B(好吧,是两个),
A.x ,A.y 分别表示 a, b 的系数,初始化一下A = a = (1,0),B = b = (0,1), 那么,R1 = A - q1*B ; 可以看到下面还要用到R1,而且用不到 A 了,
直接 令 A = R1 多好呢! A = A - B*q1 ; 再看R2 , R2 = B - q2*R1 = B - q2*A ; 同样 令 B = R2;则 B = B - A*q2;下面 R3 = A - q3*B ;也就是
A = A - q3*B ;再接着: B = B - A*q 。。。。。。等等,什么时候终止呢?在“再看R2"之前,考虑这样一个问题,若 R1 == g 呢?显然这个时候就要终止了,伪代码如下:
while(1) {
q = a/b;
r = a%b;
A = A - B*q;
(a,b) = (b,a%b);
(A,B) = (B,A) //这样更容易写代码
if (a%b == 0) break;
}
: 0 需特判。
代码如下:
void sol(int a,int b,int &g)
{
A.x = B.y = ;
A.y = B.x = ;
if (a == ) {
g = b ;
A.x = ;
A.y = ;
return ;
}
if (b == ) {
g = a;
A.x = ;
A.y = ;
return ;
}
Node C ;
int q, r ;
while () {
q = a/b ;
r = a%b ;
A.x = A.x - B.x*q;
A.y = A.y - B.y*q;
a = b;
b = r;
if (a%b == ) break;
C = A;
A = B;
B = C;
}
g = b ;
}
ex_gcd
其实呢?还有一个代码比较简短,用的是递归,附上如下:
void ex_gcd(int a,int b,int &g,int &x,int &y)
{
if (!b) {
g = a;
x = ;
y = ;
}
else {
ex_gcd(b,a%b,g,y,x) ;
y -= x*(a/b) ;
}
}
递归版的ex_gcd
显然, a*x+b*y = gcd(a,b)的解不止一个((x,y)),事实上,此方程的每一个解都可由 (x+k*(b/g),y-k*(a/g))得出,其中 k 可取任意整数。
数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)的更多相关文章
- 五一DAY1数论学习笔记
by ruanxingzhi 整除性 如果a能把b除尽,也就是没有余数,则我们称a整除b,亦称b被a整除.(不是除以,是整除!!) 记作:\(a|b\) |这个竖杠就是整除符号 整除的性质 自反性 对 ...
- 《Fluid Engine Development》 学习笔记1-求解线性方程组
我个人对基于物理的动画很感兴趣,最近在尝试阅读<Fluid Engine Development>,由于内容涉及太多的数学问题,而单纯学习数学又过于枯燥,难以坚持学习(我中途放弃好多次了) ...
- ES6-个人学习笔记二--解构赋值
第二期,解构赋值如果能够熟练应用确实是个十分方便的功能,但是过分的依赖和嵌套只会让代码理解和维护起来十分困难,是个体现高逼格的表达式呢~ 1,解构赋值的基础 //定义:es6运行按照一定模式,从数组或 ...
- mybatis 学习笔记 -详解mybatis 及实例demo
快速入门1 要点: 首先明白mybatis 是什么 这是一个持久层的框架.之前叫做ibatis.所以,在它的代码中出现ibatis这个词的时候,不要感到惊讶.不是写错了,它确实就是这个样子的. 首先, ...
- linux学习笔记-10.解压与压缩
1.gzip压缩 gzip a.txt 2.解压 gunzip a.txt.gzgzip -d a.txt.gz 3.bzip2压缩 bzip2 a 4.解压 bunzip2 a.bz2bzip2 - ...
- 1.JasperReports学习笔记1-了解JasperReports
转自:http://www.blogjava.net/vjame/archive/2013/10/12/404908.html JasperReports是一个开源的java报表制作引擎,官网地址:h ...
- ES6学习笔记之解构赋值
1.数组的解构赋值 简单用法 { // 旧 let a=1,b=3; //新 let [a,b]=[1,3]; console.log(a,b);// 1 3 } 只要等号两边的模式相同,左边的变量就 ...
- sql注入学习笔记 详解篇
sql注入的原理以及怎么预防sql注入(请参考上一篇文章) https://www.cnblogs.com/KHZ521/p/12128364.html (本章主要针对MySQL数据库进行注入) sq ...
- C#学习笔记--详解委托,事件与回调函数
.Net编程中最经常用的元素,事件必然是其中之一.无论在ASP.NET还是WINFrom开发中,窗体加载(Load),绘制(Paint),初始化(Init)等等.“protected void Pag ...
随机推荐
- JS刷新父窗口的几种方式<转>
常用的有: window.opener.location.reload(); 和 window.location.reload(); 浮层内嵌iframe及frame集合窗口,刷新父页面的 ...
- Python压缩
ru=lambda x:x.decode('u8') rp=lambda x:x.replace('\\','/') gb=lambda x:x.decode('gbk') class ZIP: de ...
- 微信内嵌浏览器sessionid丢失问题,nginx ip_hash将所有请求转发到一台机器
现象微信中打开网页,图形验证码填写后,经常提示错误,即使填写正确也会提示错误,并且是间歇性出现. 系统前期,用户使用主要集中在pc浏览器中,一直没有出现这样的问题.近期有部分用户是在微信中访问的,才出 ...
- 原生javascript实现省市区三级联动
腾讯IP分享计划(http://ip.qq.com/)有个现成的三级联动功能,查看源码后发现可以直接使用其单独的JS文件(http://ip.qq.com/js/geo.js). 分析后发现自己需要写 ...
- VHDL学习之模块调用
http://wenku.baidu.com/link?url=SsRPUVQAOKDR8yWfDhQlceCwfZQkI-KQMLFKTDGAh3KAPr2NwEgvj0d_EZjdnsB99Upp ...
- WinForm 菜单和工具栏
菜单和工具栏: 1.MenuStrip:顶部菜单 优先级最高,默认在最顶部 (1)分割线:a.打一个减号 “-” b.右键插入Separator (2)点击事件:每 ...
- deepin linux字体渲染(转)
<?xml version='1.0'?> <!DOCTYPE fontconfig SYSTEM 'fonts.dtd'> <fontconfig> <ma ...
- 一些随机数据的生成(日期,邮箱,名字,URL,手机号,日期等等)
直接上代码 import java.text.SimpleDateFormat; import java.util.Date; import java.util.HashMap; import jav ...
- 【IE6双倍边距】-IE6双倍边距的bug
效果 代码 CSS IE6双倍边距的bug body { margin: 0; padding: 0; } .div1 { width: 200px; height: 200px; backgroun ...
- OpenGl在VS中的配置
刚开始接触OpenGl的时候难免会遇到一些问题,这些问题可能和程序无关,只是一些编译环境的设置和头文件的安装,特别整理了一下,如下: (1)将gult32.dll,glut.dll复制到windows ...