割点和桥---Tarjan算法
使用Tarjan算法求解图的割点和桥。
1、割点
主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况:
(1)该节点是根节点,且有两棵以上的子树;
(2)该节点的任一子节点,没有到该节点祖先的反向边(就是说如果没有这个割点,那么这个子节点和那个祖先之间不连通);
void cutpoint_Tarjan(int u,int parent)
{
int son; //节点m的儿子节点
ENode *ptr=(ENode *)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
son=ptr->key;
if(!vis[son])
{
DFS(son,u);
low[u]=MIN(low[u],low[son]); if(u==root) //不同之处//根节点[要定义初始访问节点,因为要考虑割点的2个判断条件]
cut[u]++;
else if(u!=root && dfn[u] <= low[son])
cut[u]++; //m是割点
}
else if(son != parent) //有后向边
{
low[u]=MIN(low[u],dfn[son]);
}
ptr=ptr->next;
}
}
2、桥
Tarjan算法求割边(桥):
【1】使用(son!=parent && dfn[son]<dfn[u]);
void init_Tarjan(void)
{
depth=;
for(int i=;i<ALG->n;i++)
{
dfn[i]=low[i]=-;
vis[i]=;
} num_bridge=;
for(int j=;j<ALG->e;j++)
{
bridge_Node[j].front=;
bridge_Node[j].rear =;
}
} void Add_to_BNode(int front,int rear) //从坐标1开始存储
{
bridge_Node[num_bridge].front=front;
bridge_Node[num_bridge].rear =rear;
} void bridgenode_Tarjan(int u,int parent)
{
int son;
ENode *ptr=(ENode*)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
son=ptr->key;
if(son!=parent && dfn[son]<dfn[u]) //避免走重边,效果和id一样
{
if(!vis[son])
{
bridge_node_Tarjan(son,u);
low[u]=MIN(low[u],low[son]);
if(low[son] > dfn[u]) //(u,son)是桥
{
num_bridge++;
Add_to_BNode(u,son); //存储桥
}
}
else if(son != parent)
{
low[u]=MIN(low[u],dfn[son]);
}
}
ptr=ptr->next;
}
}
【2】为每一条边标号 id记录每条边(一条无向边拆成的两条有向边id相同),每个点的父亲到它的边的标号;
//结点定义 /*****注意边表节点定义有所变化****/
typedef struct edge_node{
int key; //儿子节点[边的终点]
int id; //边的编号
struct edge_node *next;
}ENode;
void init_Tarjan(void) //Tarjan算法初始化
{
depth=;
for(int i=;i<ALG->n;i++)
{
vis[i]=;
dfn[i]=low[i]=-;
}
count_bridge=;
for(int j=;j<=ALG->e;j++) //取值于1-e
bridge[j]=;
}
void bridge_Tarjan(int u,int id) //id是u的父亲边的编号
{
int son; //u的儿子节点
ENode *ptr=(ENode *)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
if(ptr->id != id) //避免走重边,相当于cutpoint_Tarjan中的(son != parent)
{
son=ptr->key;
if(!vis[son])
{
bridge_Tarjan(son,ptr->id);
low[u]=MIN(low[u],low[son]);
if(dfn[u] < low[son]) //注意不取等号,当DFN[u]==LOW[v]时,当u->v dfs递归,存在一条v->u的回边,使得LOW[v]=DFN[u];故不为桥
{
bridge[ptr->id]=; //第id边是桥
printf("(%c,%c) ",ALG->vlist[u].vertex,ALG->vlist[son].vertex); //用于输出割边
}
}
else
{
low[u]=MIN(low[u],dfn[son]);
}
}
ptr=ptr->next;
}
}
割点和桥---Tarjan算法的更多相关文章
- 无向图的割点和桥 tarjan 模板
#include <bits/stdc++.h> using namespace std; const int MAXN = 20005; const int MAXM = 100005; ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
- Tarjan算法:求解图的割点与桥(割边)
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...
- tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)
这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量, ...
- tarjan算法--求解无向图的割点和桥
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如 ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
随机推荐
- MVVM架构~Knockoutjs系列之对象与对象组合
返回目录 在面向对象的程序设计里,对象是核心,一切皆为对象,对象与对象之间的关系可以表现为继承和组合,而在Knockoutjs或者JS里,也存在着对象的概念,今天主要说一下JS里的对象及对象的组合. ...
- 第二天 Linux常见命令
复习: 判断题 1.fedora.redhat.Centos.suse.ubuntu.都是常见的linux 2./分区.swap分区./boot分区都是linux的必须分区 3./dev/sda5在l ...
- Atitit 多继承实现解决方案 java c#
Atitit 多继承实现解决方案 java c# Java c#都没有提供多继承的解决方案..默认从语言级别以及没办法多继承了. 只可以崽类库的级别实现拉.. 继承的原理就是,使用一个内部super指 ...
- OutputCache概念学习
目录 OutputCache概念学习 OutputCache属性详解(一) OutputCache属性详解(二) OutputCache属性详解(三) OutputCache属性详解(四)— SqlD ...
- C#学习系列-this的使用
如有错误,欢迎指正. 1.代表当前类,在当前类中可使用this访问当前类成员变量和方法(需要注意的是 静态方法中不能使用this),也可用于参数传递,传递当前对象的引用. 下面贴代码: class P ...
- D3+svg 案例
<!doctype html><html lang="en"><head> <meta charset="UTF-8" ...
- Android 实现应用升级方案(暨第三方自动升级服务无法使用后的解决方案)
第三方推送升级服务不再靠谱: 以前在做Android开发的时候,在应用升级方面都是使用的第三方推送升级服务,但是目前因为一些非技术性的问题,一些第三方厂商不再提供自动升级服务,比如友盟,那么当第三方推 ...
- javascript_core_07之错误处理、函数作用域
1.错误处理:保证程序发生错误时,不会被强制退出: ①处理方式:try{可能出错的正常语句:}catch(err){只有出现错误时才执行的错误处理代码:}finally{无论是否出错都必须执行的代码: ...
- 国内常用的三种框架:ionic/mui/framework7对比
国内常用的三种框架:ionic/mui/framework7对比 原文连接:http://zhihu.com/question/19558750/answer/91179040
- angularJS之事件处理
angularJS的事件不像js一样,会默认有冒泡和捕获,还有angularJS之间的同名控制器之间,也只是同名, 不会让他们关联起来,就是这个名字的控制器的数据的改变不会影响到另一个同名的控制器. ...