使用Tarjan算法求解图的割点和桥。

1、割点

主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况:
        (1)该节点是根节点,且有两棵以上的子树;
        (2)该节点的任一子节点,没有到该节点祖先的反向边(就是说如果没有这个割点,那么这个子节点和那个祖先之间不连通);

 void cutpoint_Tarjan(int u,int parent)
{
int son; //节点m的儿子节点
ENode *ptr=(ENode *)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
son=ptr->key;
if(!vis[son])
{
DFS(son,u);
low[u]=MIN(low[u],low[son]); if(u==root) //不同之处//根节点[要定义初始访问节点,因为要考虑割点的2个判断条件]
cut[u]++;
else if(u!=root && dfn[u] <= low[son])
cut[u]++; //m是割点
}
else if(son != parent) //有后向边
{
low[u]=MIN(low[u],dfn[son]);
}
ptr=ptr->next;
}
}

2、桥

Tarjan算法求割边(桥):
【1】使用(son!=parent && dfn[son]<dfn[u]);

 void init_Tarjan(void)
{
depth=;
for(int i=;i<ALG->n;i++)
{
dfn[i]=low[i]=-;
vis[i]=;
} num_bridge=;
for(int j=;j<ALG->e;j++)
{
bridge_Node[j].front=;
bridge_Node[j].rear =;
}
} void Add_to_BNode(int front,int rear) //从坐标1开始存储
{
bridge_Node[num_bridge].front=front;
bridge_Node[num_bridge].rear =rear;
} void bridgenode_Tarjan(int u,int parent)
{
int son;
ENode *ptr=(ENode*)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
son=ptr->key;
if(son!=parent && dfn[son]<dfn[u]) //避免走重边,效果和id一样
{
if(!vis[son])
{
bridge_node_Tarjan(son,u);
low[u]=MIN(low[u],low[son]);
if(low[son] > dfn[u]) //(u,son)是桥
{
num_bridge++;
Add_to_BNode(u,son); //存储桥
}
}
else if(son != parent)
{
low[u]=MIN(low[u],dfn[son]);
}
}
ptr=ptr->next;
}
}

【2】为每一条边标号 id记录每条边(一条无向边拆成的两条有向边id相同),每个点的父亲到它的边的标号;

 //结点定义  /*****注意边表节点定义有所变化****/
typedef struct edge_node{
int key; //儿子节点[边的终点]
int id; //边的编号
struct edge_node *next;
}ENode;
void init_Tarjan(void) //Tarjan算法初始化
{
depth=;
for(int i=;i<ALG->n;i++)
{
vis[i]=;
dfn[i]=low[i]=-;
}
count_bridge=;
for(int j=;j<=ALG->e;j++) //取值于1-e
bridge[j]=;
}
void bridge_Tarjan(int u,int id) //id是u的父亲边的编号
{
int son; //u的儿子节点
ENode *ptr=(ENode *)malloc(sizeof(ENode)); dfn[u]=low[u]=depth++; //访问+标记+遍历
vis[u]=;
ptr=ALG->vlist[u].firstedge;
while(ptr!=NULL)
{
if(ptr->id != id) //避免走重边,相当于cutpoint_Tarjan中的(son != parent)
{
son=ptr->key;
if(!vis[son])
{
bridge_Tarjan(son,ptr->id);
low[u]=MIN(low[u],low[son]);
if(dfn[u] < low[son]) //注意不取等号,当DFN[u]==LOW[v]时,当u->v dfs递归,存在一条v->u的回边,使得LOW[v]=DFN[u];故不为桥
{
bridge[ptr->id]=; //第id边是桥
printf("(%c,%c) ",ALG->vlist[u].vertex,ALG->vlist[son].vertex); //用于输出割边
}
}
else
{
low[u]=MIN(low[u],dfn[son]);
}
}
ptr=ptr->next;
}
}

割点和桥---Tarjan算法的更多相关文章

  1. 无向图的割点和桥 tarjan 模板

    #include <bits/stdc++.h> using namespace std; const int MAXN = 20005; const int MAXM = 100005; ...

  2. tarjan算法--求无向图的割点和桥

    一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...

  3. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  4. Tarjan算法:求解图的割点与桥(割边)

    简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...

  5. tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)

    这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量, ...

  6. tarjan算法--求解无向图的割点和桥

    1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如 ...

  7. Tarjan算法初探(3):求割点与桥以及双连通分量

    接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...

  8. tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)

    基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...

  9. [Tarjan系列] Tarjan算法求无向图的桥和割点

    RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...

随机推荐

  1. 贫下中农版jQuery

    之前写过一篇JavaScript命名空间的文章,写完后一对比对jQuery的简单使用很是惊羡,看了看人家源码,用的原理很类似啊,改进一下之前的版本,做个简易版的jQuery 之前的代码 (functi ...

  2. PMP和PRINCE2

    首先先简单介绍一下,PMP是属于美国的项目管理知识体系.PRINCE2是属于英国项目体系. 美国的项目管理知识体系最主要的价值是把世界上所有跟项目管理相关的,不管是知识.最佳实践.工具技术,把它们汇总 ...

  3. Atitit截屏功能的设计解决方案

    Atitit截屏功能的设计解决方案 自己实现.... 使用快捷键.. 弹出自己的win,,背景是屏幕快照 点击鼠标光标变成十字状态 出现截屏窗口调整截屏窗口位置与大小 释放鼠标,三个btn,,  复制 ...

  4. 批处理集锦——(5)使用dir查找文件

    eg dir /a-d /s /b *.bat -d表示不显示.bat结尾的文件夹

  5. js 事件

    事件:一般用于浏览器与用户操作进行交互 js事件的三种模型:内联模型.脚本模型.DOM2模型 内联模型:事件处理函数是HTML标签的属性 <input type="button&quo ...

  6. 如何优雅的使用vue+vux开发app -03

    如何优雅的使用vue+vux开发app -03 还是一个错误的示范,但是离优雅差的不远了... <!DOCTYPE html> <html> <head> < ...

  7. javaweb回顾第八篇如何创建自定义标签

    前言:在javaweb开发中自定义标签的用处还是挺多的.今天和大家一起看自定义标签是如何实现的. 1:什么是标签 标签是一种XML元素,通过标签可以使JSP页面变得简介易用,而且标签具有很好的复用性. ...

  8. Comet服务器推送与SignalR

        HTTP协议是一个典型的Request/Response协议,是基于TCP/IP之上的一个应用层协议,该协议最典型的特点就是无状态且需要客户端发起Request服务端才能进行Response, ...

  9. 【WP8.1开发】选择与搜索联系人

    在需要的情况下,可以通过相关的API来访问手机上的联系人信息:当然,在不必要的情况下,不要随便去获取别人的数据. 要从联系人列表中选择并获取一位或者N位联系人的详细信息,比较简单的做法是利用Conta ...

  10. Android开发常用属性

    1.android string.xml 文字中间加入空格 android string.xml前后加空格的技巧 <string name="password">密   ...