numpy常用用法总结
numpy 简介
numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab。
官方文档(https://docs.scipy.org/doc/numpy-dev/user/quickstart.html)
各种用法介绍
首先是numpy中的数据类型,ndarray类型,和标准库中的array.array并不一样。
ndarray的一些属性
ndarray.ndim
the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank.
ndarray.shape
the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be (n,m). The length of the shape tuple is therefore the rank, or number of dimensions, ndim.
ndarray.size
the total number of elements of the array. This is equal to the product of the elements of shape.
ndarray.dtype
an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and numpy.float64 are some examples.
ndarray.itemsize
the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.
ndarray.data
the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.
ndarray的创建
>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
二维的数组
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
创建时指定类型
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
创建一些特殊的矩阵
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
创建一些有特定规律的矩阵
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 ) # it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points
>>> f = np.sin(x)
一些基本的运算
加减乘除三角函数逻辑运算
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
矩阵运算
matlab中有.* ,./等等
但是在numpy中,如果使用+,-,×,/优先执行的是各个点之间的加减乘除法
如果两个矩阵(方阵)可既以元素之间对于运算,又能执行矩阵运算会优先执行元素之间的运算
>>> import numpy as np
>>> A = np.arange(10,20)
>>> B = np.arange(20,30)
>>> A + B
array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48])
>>> A * B
array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551])
>>> A / B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> B / A
array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
如果需要执行矩阵运算,一般就是矩阵的乘法运算
>>> A = np.array([1,1,1,1])
>>> B = np.array([2,2,2,2])
>>> A.reshape(2,2)
array([[1, 1],
[1, 1]])
>>> B.reshape(2,2)
array([[2, 2],
[2, 2]])
>>> A * B
array([2, 2, 2, 2])
>>> np.dot(A,B)
8
>>> A.dot(B)
8
一些常用的全局函数
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([ 0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2., 0., 6.])
矩阵的索引分片遍历
>>> a = np.arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])
>>> a[ : :-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
>>> for i in a:
... print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0
矩阵的遍历
>>> import numpy as np
>>> b = np.arange(16).reshape(4, 4)
>>> for row in b:
... print(row)
...
[0 1 2 3]
[4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
>>> for node in b.flat:
... print(node)
...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
矩阵的特殊运算
改变矩阵形状--reshape
>>> a = np.floor(10 * np.random.random((3,4)))
>>> a
array([[ 6., 5., 1., 5.],
[ 5., 5., 8., 9.],
[ 5., 5., 9., 7.]])
>>> a.ravel()
array([ 6., 5., 1., 5., 5., 5., 8., 9., 5., 5., 9., 7.])
>>> a
array([[ 6., 5., 1., 5.],
[ 5., 5., 8., 9.],
[ 5., 5., 9., 7.]])
resize和reshape的区别
resize会改变原来的矩阵,reshape并不会
>>> a
array([[ 6., 5., 1., 5.],
[ 5., 5., 8., 9.],
[ 5., 5., 9., 7.]])
>>> a.reshape(2,-1)
array([[ 6., 5., 1., 5., 5., 5.],
[ 8., 9., 5., 5., 9., 7.]])
>>> a
array([[ 6., 5., 1., 5.],
[ 5., 5., 8., 9.],
[ 5., 5., 9., 7.]])
>>> a.resize(2,6)
>>> a
array([[ 6., 5., 1., 5., 5., 5.],
[ 8., 9., 5., 5., 9., 7.]])
矩阵的合并
>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8., 8.],
[ 0., 0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1., 8.],
[ 0., 4.]])
>>> np.vstack((a,b))
array([[ 8., 8.],
[ 0., 0.],
[ 1., 8.],
[ 0., 4.]])
>>> np.hstack((a,b))
array([[ 8., 8., 1., 8.],
[ 0., 0., 0., 4.]])
numpy常用用法总结的更多相关文章
- 数据分析-numpy的用法
一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去 ...
- centos的vi常用用法
centos的vi常用用法 vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器,这里只是简单地介绍一下它的用法和一小部分指令.由于对Unix及Linux系统的 ...
- MySql与SqlServer的一些常用用法的差别
MySql与SqlServer的一些常用用法的差别 本文为转载 本文将主要列出MySql与SqlServer不同的地方,且以常用的存储过程的相关内容为主. 1. 标识符限定符 SqlServer [] ...
- [转]ssh常用用法小结
ssh常用用法小结 1.连接到远程主机: 命令格式 : ssh name@remoteserver 或者 ssh remoteserver -l name 说明:以上两种方式都可以远程登录到远程主机, ...
- 【三支火把】---一份程序看懂C程序printf()的几种常用用法
闲来继续巩固我的学习之路,今天略微整理了一下,C程序中Printf()的一些常用用法,虽然自己以前好像会,但是不够系统,今天大致整理了一些,先贴上来看看,以后在看到其他,继续补充,希望能帮到一些像我一 ...
- grep参数说明及常用用法
grep参数说明及常用用法 趁着午休的时间把自己经常使用的一些grep命令整理一下. 方便以后查看. 后续会逐步把awk/sed/find等常用的命令理一理. 增强下记忆. 也算是对得起自己了. ^^ ...
- ssh常用用法小结
ssh常用用法小结 1.连接到远程主机: 命令格式 : ssh name@remoteserver 或者 ssh remoteserver -l name 说明:以上两种方式都可以远程登录到远程主机, ...
- C# Linq基本常用用法
1.什么是Linq? Lanaguage Interated Query(语言集成查询),Linq 是集成C# 和VB这些语言中用于提供数据查询能力的一个新特性. 这里只介绍两种基本常用用法. 学习方 ...
- Java集合中迭代器的常用用法
该例子展示了一个Java集合中迭代器的常用用法public class LinkedListTest { public static void main(String[] args) { List&l ...
随机推荐
- tp5 中 model 的删除方法
根据主键删除(推荐) use app\index\model\User as UserModel; public function delete(){ UserModel::destroy([1,2, ...
- HTTP状态码(2xx,3xx,4xx,5xx)
HTTP状态码负责表示客户端请求的返回结果,标记服务器的处理结果. HTTP常用状态码分为5种: 类别 原因短语 1xx Informational(信息状态码) 接受请求正在处理 2xx Suc ...
- CKEditor 配置
在asp.net 中注意需要特殊处理控件的ID 先引入js <script type="text/javascript" src="ckeditor/ckedito ...
- LINK1123:failure during conversion to COFF:file invalid or corrupt
参考 http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4528320 试了微软官方说明:http ...
- mysql 分表
1.分表,即把一个很大的表达数据分到几个表中,这样每个表数据都不多. 优点:提高并发量,减小锁的粒度 缺点:代码维护成本高,相关sql都需要改动 2.分区,所有的数据还在一个表中,但物理存储数据根据一 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
- centos7修改主机名
临时修改: hostname centos7 永久修改: # hostnamectl set-hostname cen07
- 【Java EE 学习 44】【Hibernate学习第一天】【Hibernate对单表的CRUD操作】
一.Hibernate简介 1.hibernate是对jdbc的二次开发 2.jdbc没有缓存机制,但是hibernate有. 3.hibernate的有点和缺点 (1)优点:有缓存,而且是二级缓存: ...
- AngularJS介绍
AngularJS介绍–AngularJS的前世今生 AngularJS是什么 在Web开发领域,我们一般使用HTML作为前端页面元素的声明式语言,使用CSS技术作为展示样式的描述语言,JavaScr ...
- LeetCode: Largest Rectangle in Histogram(直方图最大面积)
http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...