纸箱堆叠

【问题描述】

P 工厂是一个生产纸箱的工厂。纸箱生产线在人工输入三个参数 n, p, a 之后,即可自动化生产三边边长为

(a mod P, a^2 mod p, a^3 mod P),(a^4 mod p, a^5 mod p, a^6 mod P),······,(a^(3n-2) mod p, a^(3n-1) mod p, a^(3n) mod p)

的n个纸箱。在运输这些纸箱时,为了节约空间,必须将它们嵌套堆叠起来。

一个纸箱可以嵌套堆叠进另一个纸箱当且仅当它的最短边、次短边和最长边长度分别严格小于另一个纸箱的最短边、次短边和最长边长度。这里不考虑任何旋转后在对角线方向的嵌套堆叠。

你的任务是找出这n个纸箱中数量最多的一个子集,使得它们两两之间都可嵌套堆叠起来。

【输入格式】

输入文件的第一行三个整数,分别代表 a, p, n

【输出格式】

输出文件仅包含一个整数,代表数量最多的可嵌套堆叠起来的纸箱的个数。

【样例输入】

10 17 4

【样例输出】

2

【样例说明】

生产出的纸箱的三边长为(10, 15, 14), (4, 6, 9) , (5, 16, 7), (2, 3, 13)。其中只有(4, 6, 9)可堆叠进(5, 16, 7),故答案为 2。

【样例说明】

2<=P<=2000000000,1<=a<=p-1,a^k mod p<>0,ap<=2000000000,1<=N<=50000


题解:

我们设长宽高为x,y,z

CDQ分治,以x为关键词排序

接下来递归分成两区间

假设左区间已经处理完了答案

将左右区间分别以y为关键字排序

那么就保证了任何左区间的x必定小于任何右区间的x

我们用两个指针分别从左右区间顺序向后扫

将左区间的z作为位置不断加入树状数组,值为当前点的答案

由于左右区间有序,可以手动保证右区间的扫到的点的y大于所有左区间扫到的点的y

就可以用树状数组更新右区间点的值:当前点的答案等于能转移到当前点的点的答案加一的最大值,这里用上了Dp的思想

然后清空树状数组,再将左右区间合并按第一维排序,恢复原状态, 保证处理的是最初的右区间,且此区间按第一维有序

接着递归处理右区间,继续更新答案

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
const int me = ;
struct box
{
int x, y, z, ans;
};
box c[me], s[me];
int a, p, n, m;
int tr[me];
int num[me];
inline bool rulex(box a, box b)
{
if(a.x != b.x) return a.x < b.x;
if(a.y != b.y) return a.y < b.y;
return a.z < b.z;
}
inline bool rules(int a, int b)
{
if(s[a].z != s[b].z) return s[a].z < s[b].z;
if(s[a].x != s[b].x) return s[a].x < s[b].x;
return s[a].y < s[b].y;
}
inline bool ruley(box a, box b)
{
if(a.y != b.y) return a.y < b.y;
return a.z < b.z;
}
inline int Max(int x)
{
int maxx = ;
while(x > )
{
maxx = max(tr[x], maxx);
x -= x & (-x);
}
return maxx;
}
inline void Ins(int x, int y)
{
while(x <= m)
{
tr[x] = max(tr[x], y);
x += x & (-x);
}
}
inline void Del(int x)
{
while(x <= m)
{
tr[x] = ;
x += x & (-x);
}
}
inline int Maxx(int x, int y)
{
return (x > y) ? x : y;
}
void Work(int l, int r)
{
if(l == r) return;
int mi = l + r >> ;
while(s[mi].x == s[mi - ].x) --mi;
if(mi < l) return;
Work(l, mi);
sort(s + l, s + mi + , ruley);
sort(s + mi + , s + r + , ruley);
int u = l, v = mi + ;
while(u <= mi && v <= r)
{
if(s[u].y < s[v].y)
{
Ins(s[u].z, s[u].ans);
++u;
}
else
{
s[v].ans = Maxx(s[v].ans, Max(s[v].z - ) + );
++v;
}
}
for(int i = v; i <= r; ++i)
s[i].ans = Maxx(s[i].ans, Max(s[i].z - ) + );
for(int i = l; i <= mi; ++i) Del(s[i].z);
sort(s + mi + , s + r + , rulex);
Work(mi + , r);
}
int cc[];
int main()
{
a = Get(), p = Get(), n = Get();
cc[] = ;
for(int i = ; i <= n; ++i)
{
cc[] = cc[] * a % p;
cc[] = cc[] * a % p;
cc[] = cc[] * a % p;
cc[] = cc[];
sort(cc + , cc + );
c[i].x = cc[], c[i].y = cc[], c[i].z = cc[];
c[i].ans = ;
}
sort(c + , c + + n, rulex);
for(int i = ; i <= n; ++i)
{
if(c[i].x != c[i - ].x || c[i].y != c[i - ].y || c[i].z != c[i - ].z)
{
s[++m] = c[i];
num[m] = m;
}
}
sort(num + , num + + m, rules);
int k = ;
for(int i = ; i <= m; ++i)
{
k = i;
while(s[num[i]].z == s[num[i + ]].z)
{
s[num[i]].z = k;
++i;
}
s[num[i]].z = k;
}
Work(, m);
int ans = ;
for(int i = ; i <= m; ++i)
if(s[i].ans > ans)
ans = s[i].ans;
printf("%d", ans);
}

纸箱堆叠 bzoj 2253的更多相关文章

  1. BZOJ 2253: [2010 Beijing wc]纸箱堆叠

    题目 2253: [2010 Beijing wc]纸箱堆叠 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 239  Solved: 94 Descr ...

  2. 【BZOJ】【2253】【WC 2010 BeijingWC】纸箱堆叠

    树套树 Orz zyf 我的树套树不知道为啥一直WA……只好copy了zyf的写法TAT 这题还可以用CDQ分治来做……但是蒟蒻不会…… //y坐标的树状数组是按权值建的……所以需要离散化…… /** ...

  3. BZOJ2253: [2010 Beijing wc]纸箱堆叠

    题解: 其实就是求三维偏序最长链.类似于三维逆序对,我们可以用树状数组套平衡树来实现. DP方程 :f[i]=max(f[j]+1) a[j]<a[i] 我们按一维排序,另一位建立树状数组,把第 ...

  4. 【BZOJ2253】[2010 Beijing wc]纸箱堆叠 cdq分治

    [BZOJ2253][2010 Beijing wc]纸箱堆叠 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后,即可自动化生产三边边长为 ...

  5. 【BZOJ2253】纸箱堆叠 [CDQ分治]

    纸箱堆叠 Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description P 工厂是一个生产纸箱的工厂. 纸 ...

  6. BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组

    BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后, ...

  7. 【BZOJ】2253: [2010 Beijing wc]纸箱堆叠

    题意 三维严格偏序最长链.(\(n \le 50000\)) 分析 按第一维排序然后以第二和第三维作为关键字依次加入一个二维平面,维护前缀矩形最大值. 题解 当然可以树套树....可是似乎没有随机化算 ...

  8. bzoj2253纸箱堆叠(动态规划+cdq分治套树状数组)

    Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 ...

  9. BZOJ2253 2010 Beijing wc 纸箱堆叠 CDQ分治

    这题之前度娘上没有CDQ分治做法,gerwYY出来以后写了一个.不过要sort3遍,常数很大. gerw说可以类似划分树的思想优化复杂度,但是蒟蒻目前不会划分树(会了主席树就懒得去弄了). 嗯 将me ...

随机推荐

  1. 关于ubuntu实机与虚机互相copy

    我的开发环境是在ubuntu上的,但是ubuntu上没有官方支持的QQ,有些不太方便,所以在上面虚了一个Win7(先是win10,但是win10最新版本太坑了,不说了),不过经常会出现复制文件,或者文 ...

  2. 用scikit-learn进行LDA降维

    在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...

  3. 【每日一linux命令4】常用参数:

     下面所列的是常见的参数(选项)义: --help,-h                              显示帮助信息 --version,-V                        ...

  4. Entity Framework教程(第二版)

    源起 很多年前刚毕业那阵写过一篇关于Entity Framework的文章,没发首页却得到100+的推荐.可能是当时Entity Framework刚刚发布介绍EF的文章比较少.一晃这么多年过去了,E ...

  5. “不给力啊,老湿!”:RSA加密与破解

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 加密和解密是自古就有技术了.经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫 ...

  6. angular实现统一的消息服务

    后台API返回的消息怎么显示更优雅,怎么处理才更简洁?看看这个效果怎么样? 自定义指令和服务实现 自定义指令和服务实现消息自动显示在页面的顶部,3秒之后消失 1. 显示消息 这种显示消息的方式是不是有 ...

  7. Partition:分区切换(Switch)

    在SQL Server中,对超级大表做数据归档,使用select和delete命令是十分耗费CPU时间和Disk空间的,SQL Server必须记录相应数量的事务日志,而使用switch操作归档分区表 ...

  8. 深入理解BFC

    定义 在解释BFC之前,先说一下文档流.我们常说的文档流其实分为定位流.浮动流和普通流三种.而普通流其实就是指BFC中的FC.FC是formatting context的首字母缩写,直译过来是格式化上 ...

  9. obj.style.z-index的正确写法

    obj.style.z-index的正确写法 今天发现obj.style.z-index在js里面报错,后来才知道在js里应该把含"-"的字符写成驼峰式,例如obj.style.z ...

  10. 推荐一个ASP.NET网站内容管理系统源码

    许多人都有各自的兴趣,如打球.踢毽子.看书.看电视.玩游戏等等....我近来迷上了猜灯谜,于是业余做了一个在线猜灯谜的网站:何问起谜语. 先出个谜语让你猜猜:不可缺一点(打一字).可以在线猜:http ...