题意:求一个序列中本质不同的连续子序列的最大值之和。

由于要求“本质不同”,所以后缀数组就派上用场了,可以从小到大枚举每个后缀,对于每个sa[i],从sa[i]+ht[i]开始枚举(ht[0]=0),这样就能不重复不遗漏地枚举出每一个子串。

但是这样做,最坏情况仍旧是$O(n^2)$的,可能会被卡掉,需要进一步优化。

对于每个sa[i],设k=sa[i]+ht[i],则问题转化成了求max(s[sa[i]],s[sa[i]+1],...,s[k])+max(s[sa[i]],s[sa[i]+1],...,s[k+1])+...+max(s[sa[i]],s[sa[i]+1],...,s[n-1])。

可以发现,随着下标的增大,最大值是单调不减的,这启示我们利用单调栈将后缀进行分段,对于每个最大值不同的段求出后缀和,对于每个sa[i],利用RMQ求出s[sa[i],k]中的最大值mx,然后在单调栈上二分找到第一个大于mx的值的下标,将贡献分成左右两部分相加即可。

一开始可以将初始序列离散化,求出后缀数组后再还原回去,这样复杂度就不依赖于序列元素的大小而只与序列长度有关了,$O(nlogn)$

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+,inf=0x3f3f3f3f;
int s[N],buf1[N],buf2[N],b[N],nb,c[N],n,sa[N],ht[N],rnk[N],ST[N][],Log[N],sta[N],idx[N],tp;
ll sum[N];
void Sort(int* x,int* y,int m) {
for(int i=; i<m; ++i)c[i]=;
for(int i=; i<n; ++i)++c[x[i]];
for(int i=; i<m; ++i)c[i]+=c[i-];
for(int i=n-; i>=; --i)sa[--c[x[y[i]]]]=y[i];
}
void da(int* s,int n,int m=) {
int *x=buf1,*y=buf2;
x[n]=y[n]=-;
for(int i=; i<n; ++i)x[i]=s[i],y[i]=i;
Sort(x,y,m);
for(int k=; k<n; k<<=) {
int p=;
for(int i=n-k; i<n; ++i)y[p++]=i;
for(int i=; i<n; ++i)if(sa[i]>=k)y[p++]=sa[i]-k;
Sort(x,y,m),p=,y[sa[]]=;
for(int i=; i<n; ++i)y[sa[i]]=x[sa[i-]]==x[sa[i]]&&x[sa[i-]+k]==x[sa[i]+k]?p-:p++;
if(p==n)break;
swap(x,y),m=p;
}
}
void getht() {
for(int i=; i<n; ++i)rnk[sa[i]]=i;
ht[]=,s[n]=-;
for(int i=,k=; i<n; ++i) {
if(k)--k;
if(!rnk[i])continue;
for(; s[i+k]==s[sa[rnk[i]-]+k]; ++k);
ht[rnk[i]]=k;
}
}
void build() {
for(int i=; i<n; ++i)ST[i][]=s[i];
for(int k=; k<=Log[n]; ++k)
for(int i=; i+(<<k)-<n; ++i)
ST[i][k]=max(ST[i][k-],ST[i+(<<(k-))][k-]);
}
int qry(int L,int R) {
int k=Log[R-L+];
return max(ST[L][k],ST[R-(<<k)+][k]);
}
struct QR {
int k,mx;
bool operator<(const QR& b)const {return k<b.k;}
} qr[N];
void push(int x,int i) {
for(; ~tp&&x>=sta[tp]; --tp);
sta[++tp]=x,sum[tp]=(ll)x*(idx[tp-]-i)+sum[tp-],idx[tp]=i;
}
int main() {
Log[]=-;
for(int i=; i<N; ++i)Log[i]=Log[i>>]+;
int T;
for(scanf("%d",&T); T--;) {
scanf("%d",&n);
for(int i=; i<n; ++i)scanf("%d",&s[i]);
nb=;
for(int i=; i<n; ++i)b[nb++]=s[i];
sort(b,b+nb),nb=unique(b,b+nb)-b;
for(int i=; i<n; ++i)s[i]=lower_bound(b,b+nb,s[i])-b;
da(s,n,n+),getht();
for(int i=; i<n; ++i)s[i]=b[s[i]];
build();
ll ans=;
for(int i=; i<n; ++i) {
int k=sa[i]+ht[i];
qr[i]= {k,qry(sa[i],k)};
}
sort(qr,qr+n);
sta[tp=]=inf,sum[tp]=,idx[tp]=n;
for(int i=n-,j=n-; i>=; --i) {
int k=qr[i].k,mx=qr[i].mx;
for(; j>=k; --j)push(s[j],j);
int t=lower_bound(sta,sta+tp+,mx,greater<int>())-sta-;
ans+=(ll)mx*(idx[t]-k)+sum[t];
}
printf("%lld\n",ans);
}
return ;
}

Gym - 102028H Can You Solve the Harder Problem? (后缀数组+RMQ+单调栈)的更多相关文章

  1. HDU - 5008 Boring String Problem (后缀数组+二分法+RMQ)

    Problem Description In this problem, you are given a string s and q queries. For each query, you sho ...

  2. HDU 5008 Boring String Problem(后缀数组+二分)

    题目链接 思路 想到了,但是木写对啊....代码 各种bug,写的乱死了.... 输出最靠前的,比较折腾... #include <cstdio> #include <cstring ...

  3. HDU5008 Boring String Problem(后缀数组)

    练习一下字符串,做一下这道题. 首先是关于一个字符串有多少不同子串的问题,串由小到大排起序来应该是按照sa[i]的顺序排出来的产生的. 好像abbacd,排序出来的后缀是这样的 1---abbacd ...

  4. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  5. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. DFS+剪枝 HDOJ 5323 Solve this interesting problem

    题目传送门 /* 题意:告诉一个区间[L,R],问根节点的n是多少 DFS+剪枝:父亲节点有四种情况:[l, r + len],[l, r + len - 1],[l - len, r],[l - l ...

  7. hdu5323 Solve this interesting problem(爆搜)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Solve this interesting problem Time Limit ...

  8. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  9. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

随机推荐

  1. redis同步到磁盘

  2. JavaSE基础(十)--Java中的基本数据类型转换

    Java中的基本数据类型转换 说基本数据类型转换之前,先了解下 Java 中的 8 种基本数据类型,以及它们的占内存的容量大小和表示的范围,如下图所示. 重新温故了下原始数据类型,现在来解释下它们之间 ...

  3. mybatis三种批量插入方式对比

    <insert id="addInquiryQA" parameterType="java.util.List"> insert into inqu ...

  4. 浅谈>/dev/null 2>&1

    在crond计划任务.nohup中我们经常可以看到>/dev/null 2>&1,但是很多人并不理解其含义,想要真正的理解它,首先我们需要知道文件描述符的三种类型. 类型 文件描述 ...

  5. SQL SERVER 字符串函数 REPLACE()

    定义: REPLACE()返回用另一个字符串值替换原字符串中出现的所有指定字符串值之后的字符串. 语法: REPLACE ( string_expression , string_pattern , ...

  6. 2.6 数据库更新特定字段SQL/语句块

    1.更新单表中某一字段 1.1适用于单条或者因为in条件1-1000条数据 下面是更改CMS_CONTRACT_INFO 表中合同编号为CMCC987最后更新时间为当前时间,或者注释里特定时间. UP ...

  7. ValueError: row index was 65536, not allowed by .xls format

    报错:ValueError: row index was 65536, not allowed by .xls format 读取.xls文件正常,在写.xls文件,pd.to_excel()时候会报 ...

  8. linux系统中启动mysql方式已经客户端如和连接mysql服务器

    零点间的记录 一.启动方式1.使用linux命令service 启动:service mysqld start2.使用 mysqld 脚本启动:/etc/inint.d/mysqld start3.使 ...

  9. HDU 1811 并查集+拓扑排序

    Rank of Tetris 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1811 Problem Description 自从Lele开发了Rati ...

  10. 第8章:LeetCode--算法:二叉树的创建、遍历、删除、求高度

    创建> 需要给定一个root的key,所有小于这个key的放到左边,大于key的放到右边, 比如vector<int> tree = {5,2,7,1,9,3,8},最后的树: 5 ...