题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路

0:0
1:(1)
2:(1,1)(2)
3:(1,1,1)(2,1)(1,2)(3)
4:(1,1,1,1)(2,1,1)(1,2,1)(3,1)(1,1,2)(1,3)(2,2)(4) 显然,除了0,其他都是2^(n-1);
OJ并未检查小于等于0的情况,所以也可将该界外判断去掉。
n级台阶,第一步有n种跳法:1,2,3,...,n
跳1级,剩下的有F(n-1)种。
跳2级,剩下的有F(n-2)种。
...
跳n级,剩下的有F(0)=1种。
所以F(n)=F(n-1)+F(n-2)+...+F(0)
因为F(n-1)=F(n-2)+F(n-3)+...+F(0)
所以F(n)=2*F(n-1)

代码

public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
int temp=1;
while(target >=2){
temp *=2;
target--;
}
return temp;
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return (int)Math.pow(2,target-1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return 1 << (target -1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}else if(target == 1){
return 1;
}
return 2*JumpFloorII(target-1);
}
}

09.变态跳台阶 Java的更多相关文章

  1. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  2. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  3. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  4. 《剑指offer》— JavaScript(9)变态跳台阶

    变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { ...

  5. 剑指Offer - 九度1389 - 变态跳台阶

    剑指Offer - 九度1389 - 变态跳台阶2013-11-24 04:20 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳 ...

  6. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  7. 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列

    题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...

  8. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  9. [剑指offer] 8+9. 跳台阶+变态跳台阶 (递归 时间复杂度)

    跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*5 ...

随机推荐

  1. 详解CSS居中布局技巧

    本文转自:https://zhuanlan.zhihu.com/p/25068655#showWechatShareTip一.水平居中元素: 1.通用方法,元素的宽高未知方式一:CSS3 transf ...

  2. UVA10603Fill题解--BFS

    题目链接 https://cn.vjudge.net/problem/UVA-10603 分析 经典的倒水问题,直接BFS. 对于喜闻乐见的状态判重,一开始想来个哈希函数把一个三元组映射成一个数,后面 ...

  3. O031、Start Instance 操作详解

    参考https://www.cnblogs.com/CloudMan6/p/5470723.html   本节将通过日志文件分析 instance start 的操作过程,下面是 start inst ...

  4. Hive SQL查询效率提升之Analyze方案的实施

    0.简介 Analyze,分析表(也称为计算统计信息)是一种内置的Hive操作,可以执行该操作来收集表上的元数据信息.这可以极大的改善表上的查询时间,因为它收集构成表中数据的行计数,文件计数和文件大小 ...

  5. css中animation和@keyframes 动画

    Animation 使用简写属性,将动画与 div 元素绑定: div { animation:mymove 5s infinite; -webkit-animation:mymove 5s infi ...

  6. 常用的Java工具类——十六种

    常用的Java工具类——十六种 在Java中,工具类定义了一组公共方法,这篇文章将介绍Java中使用最频繁及最通用的Java工具类.以下工具类.方法按使用流行度排名,参考数据来源于Github上随机选 ...

  7. linux安装RabbitMQ yum

      一.RabbitMQ概念RabbitMQ是流行的开源消息队列系统,是AMQP(Advanced Message Queuing Protocol高级消息队列协议)的标准实现,用erlang语言开发 ...

  8. 【Day1】4.基础语法及分支结构

     视频地址(全部) https://edu.csdn.net/course/detail/26057 课件地址(全部) https://download.csdn.net/download/gentl ...

  9. CAN学习方法(知乎)

    作者:心机之花链接:https://www.zhihu.com/question/26776219/answer/244433861来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  10. Django学习系列20:改进功能测试

    隐示等待和显示等待 我们看看在功能测试中function_tests.py中的 time.sleep inputbox.send_keys(Keys.ENTER) time.sleep(1) self ...