Number Of Permutations

思路:利用容斥,首先所有可能的排列肯定是fac[n],然后可能会有三种 bad 的情况:

①第一个元素的排列是非递减

②第二种是第二个元素的排列是非递减

③这两个可能出现的重叠情况,意思就是说同时导致①②成立

这个时候我们利用容斥的思想,用fac[n]-①-②+③即可

我们把所有的pair按照第一个元素优先排列的方式把所有的pair sort 一下( sort 对pair的排序方式是默认第一个元素优先的),这个时候我们就保证了所有pair的第一个元素组成的排列的肯定是一个不严格递增的排列

求③的时候需要注意的一点是,在已经按照第一个元素排完序之后,如果存在s[i+1].se<s[i].se,那么就表示不会有第三种情况发生因为s[i].fi<=s[i+1].fi所以如果按照第二个元素非降序排序的话,就会导致s[i+1].fi<s[i].fi,所以,如果出现这种情况则表明③=0

代码:

// Created by CAD on 2019/8/23.
#include <bits/stdc++.h> #define se second
#define pii pair<int,int>
#define ll long long
using namespace std; const int mod=998244353;
const int maxn=3e5+5;
pii s[maxn];
ll fac[maxn];
map<pii,int >ab;
map<int,int>a,b;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n;cin>>n;
fac[0]=1;
for(int i=1;i<=n;++i)
fac[i]=fac[i-1]*i%mod;
for(int i=1;i<=n;++i)
{
int x,y;
cin>>x>>y;
a[x]++,b[y]++,ab[{x,y}]++;
s[i]=make_pair(x,y);
}
sort(s+1,s+n+1);
ll ans=fac[n],temp=1;
for(auto i:a)
temp=temp*fac[i.se]%mod;
ans=(ans-temp+mod)%mod,temp=1;
for(auto i:b)
temp=temp*fac[i.se]%mod;
ans=(ans-temp+mod)%mod,temp=1;
for(auto i:ab)
temp=temp*fac[i.se]%mod;
for(int i=1;i<n;++i)
if(s[i+1].se<s[i].se) temp=0;
ans=(ans+temp)%mod;
cout<<ans<<endl;
return 0;
}

Number Of Permutations的更多相关文章

  1. D. Number Of Permutations 符合条件的排列种类

    D. Number Of Permutations time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. 双元素非递增(容斥)--Number Of Permutations Educational Codeforces Round 71 (Rated for Div. 2)

    题意:https://codeforc.es/contest/1207/problem/D n个元素,每个元素有a.b两个属性,问你n个元素的a序列和b序列有多少种排序方法使他们不同时非递减(不同时g ...

  3. CF D. Number Of Permutations 排列

    挺水的一道题~ 拿全排列随便乘一下就好了. #include <cstdio> #include <algorithm> #define N 300004 #define ll ...

  4. 1207D Number Of Permutations

    题目大意 给你n个二元组 问你有几种排列是的按两个关键字中的任意一个都不是不降排列的 分析 不妨容斥 我们先加上总的方案数$n!$ 之后我们按第一个关键字排序 因为值相同的情况下不影响答案 所以让总方 ...

  5. codeforces 341C Iahub and Permutations(组合数dp)

    C. Iahub and Permutations time limit per test 1 second memory limit per test 256 megabytes input sta ...

  6. hdu 4055 Number String(dp)

    Problem Description The signature of a permutation is a string that is computed as follows: for each ...

  7. codeforces 340E Iahub and Permutations(错排or容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Iahub and Permutations Iahub is so happy ...

  8. hdu 4055 Number String(有点思维的DP)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu4055 Number String

    Number String Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. (二)创建基于maven的javaFX项目

    首先使用IDEA创建一个javaFX项目 点击finish,这就创建完成了JavaFX项目,只有将其转换为maven项目即可,如图:

  2. Java 串口通信 Ubuntu

    说一下我的操作过程吧 在Windows上先用阿猫串口网络调试助手,进行调试: 在网上找Java代码,我选择的是RXTXcomm,网上代码很多,基本都一样. 在Windows电脑上把rxtx压缩包中的r ...

  3. Js中去除数组中重复元素的6种方法

    方法一: Array.prototype.method1 = function(){ var arr=[]; //定义一个临时数组 for(var i = 0; i < this.length; ...

  4. nginx php-fpm环境搭建权限问题

    如果nginx的work process和php-fpm的运行权限相同,在logrotate的影响下,会导致被上传webshell后 被修改accesslog 故安全配置: nginx.conf: u ...

  5. windows 下 node 入门

    node js node -v npm -v nvm  v nvm list npm install * -g npm install express -g npm install -g expres ...

  6. mysql 添加远程管理用户

    GRANT ALL PRIVILEGES ON *.* TO '用户名'@'%' IDENTIFIED BY '密码' WITH GRANT OPTION;   这一条是添加全权限的用户,用户名和密码 ...

  7. JNetPcap安装及使用

    啥是JNetPcap? JNetPcap是由Sly Technologies开发的开源DPI(Deep Packet Inspection)SDK. Java平台底层不支持底层网络操作,需要通过JNI ...

  8. cubase 的 CC控制器使用

  9. 5.Dropout

    import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...

  10. zencart清空产品商品实用命令

    TRUNCATE TABLE categories; TRUNCATE TABLE categories_description;TRUNCATE TABLE meta_tags_categories ...