题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6603

题目大意:给出一个凸包,凸包内有若干个圆,要求画尽可能多的对角线使得他们两两不在凸包内相交且不与任意一个圆有公共点

题解:先预处理出所有点对间的连线是否会和圆有公共点,记为x[i][j],之后进行区间DP。设f[i][d]表示从第\(i\)个点到\(i+d\)个点这个区间之内最多能画多少条对角线,那么就有\(f[i][d]=x[i][nxt]+max(f[i][d-1],f[i+1][d-1])\),答案取f[i][d]的最大值即可

   复杂度分析:求凸包\(O(nlogn)\),预处理\(O(n^2g)\),DP\(O(n^2)\),总时间复杂度为\(O(n^2g)\)

吐槽:本题题面又臭又长,严重影响观看体验

   给出的\(n\)个点不一定是凸包的顶点,所以要先求一次凸包,而且这么重要的条件居然是隐藏在巨大题面的一个小括号里的,坑了不少人

   最后3分钟才发现这个隐藏条件,赶紧拉了个模板出来最后各种调参数终于在最后一分钟爆过去了orz...

#include<bits/stdc++.h>
using namespace std;
#define N 401
#define LL long long
const double eps=1e-;
int sgn(double x)
{
if (x<-eps) return -;
if (x>eps) return ;
return ;
}
struct Point
{
double x,y;
void read(){scanf("%lf%lf",&x,&y);}
Point operator -(const Point &t)const{return {x-t.x,y-t.y};}
double operator *(const Point &t)const{return x*t.y-y*t.x;}
double length()const{return sqrt(x*x+y*y);}
double ang()const
{
return atan2(1.0*y,1.0*x);
}
}b[N];
Point cent;
bool cmpang(const Point &p1,const Point &p2)
{
int tmp=sgn( (p1-cent).ang() - (p2-cent).ang() );
if (tmp!=) return tmp<;
return (p1-cent).length() < (p2-cent).length();
}
struct POLYGON
{
int n;
Point a[N];
void ChangetoConvex()
{
for (int i=;i<=n;i++)
if (a[i].x<a[].x||a[i].x==a[].x&&a[i].y<a[].y)
swap(a[],a[i]);
cent=a[];
sort(a+,a+n+,cmpang);
int top=;
for (int i=;i<=n;i++)
{
while(top>=&&
(a[top]-a[top-])*(a[i]-a[top])<= )
top--;
a[++top]=a[i];
}
n=top;
}
}P;
int T,n,g,r,x[N][N],f[N][N];
bool check(int x,int y)
{
if(x%n+==y || y%n+==x)
return false;
double dis=(P.a[x]-P.a[y]).length();
for(int i=;i<=g;i++)
{
double cha=abs((P.a[y]-P.a[x])*(b[i]-P.a[x]));
if(cha+eps<=1.0*r*dis)return false;
}
return true;
}
void init()
{
int ans=;
memset(f,,sizeof(f));
scanf("%d%d%d",&n,&g,&r);
P.n=n;
for(int i=;i<=n;i++)
P.a[i].read();
for(int i=;i<=g;i++)
b[i].read();
P.ChangetoConvex();
n=P.n;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
x[i][j]=x[j][i]=check(i,j);
for(int d=;d<=n-;d++)
for(int i=;i<=n;i++)
{
int nxt=(i+d-)%n+,res=;
res=max(f[i][d-],f[i%n+][d-]);
f[i][d]=x[i][nxt]+res;
ans=max(ans,f[i][d]);
}
printf("%d\n",ans);
}
int main()
{
scanf("%d",&T);
while(T--)init();
}

[2019HDU多校第三场][HDU 6603][A. Azshara's deep sea]的更多相关文章

  1. [2019HDU多校第五场][HDU 6626][C. geometric problem]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6626 题目大意:给出平面上六个点\(A,B,M,N,X,Y\)以及两条直线\(L1,L2\),要求在四 ...

  2. [2019HDU多校第四场][HDU 6617][D. Enveloping Convex]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6617 题目大意:给出一凸包\(P\),求最小的与\(P\)相似且对应边平行的多边形,使得题目给出的\( ...

  3. 2019Hdu多校第三场:1007 Find the answer(multiset 解法)

    原题链接: Find the answer c++中,multiset是库中一个非常有用的类型,它可以看成一个序列,插入一个数,删除一个数都能够在O(logn)的时间内完成,而且他能时刻保证序列中的数 ...

  4. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  5. 2019HDU多校第三场 K subsequence——最小费用最大流

    题意 给定一个 $n$ 个整数的数列,从中至多选取 $k$ 个上升子序列(一个元素最多被选一次),使得选取的元素和最大. 分析 考虑这个问题和经典网络流问题“最长不下降子序列”相似,我们考虑对这个建图 ...

  6. 2019HDU多校第三场 Distribution of books 二分 + DP

    题意:给你一个序列,你可以选择序列的一个前缀,把前缀分成k个连续的部分,要求这k个部分的区间和的最大值尽量的小,问这个最小的最大值是多少? 思路:首先看到最大值的最小值,容易想到二分.对于每个二分值m ...

  7. [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法

    今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...

  8. 2018 HDU多校第三场赛后补题

    2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...

  9. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

随机推荐

  1. windows和linux环境下使用google的glog日志库

    一.概述 glog是google推出的一款轻量级c++开源日志框架,源码在github上,目前最新release版本是v0.3.5. githut地址:https://github.com/googl ...

  2. Vue解决项目白屏

    第一步:  vue-cli项目根目录下面新建Vue.config.js文件  proxy反向代理    module.exports = {   devServer: {     proxy: {   ...

  3. 剑指Offer(4)——替换空格

    题目: 请实现一个函数,把字符串中的每个空格替换成"%20".例如输入“We are happy.”,则输出“We%20are%20happy.”. 思路: 如果按照顺序从前往后依 ...

  4. django 浅谈索引(转)

    https://blog.csdn.net/qq_37049050/article/details/80749381

  5. (四)Decorator设计模式解决GET/POST请求的乱码问题(转)

    一.Decorator设计模式 1.1.Decorator设计模式介绍 当某个对象的方法不适应业务需求时,通常有2种方式可以对方法进行增强: 编写子类,覆盖需增强的方法. 使用Decorator设计模 ...

  6. 奇妙的算法【7】-贪婪算法-dp

    问题1描述:[贪婪算法,Dijistra算法] ①有一只兔子要从一个N*N的二维矩阵方格中从上跳到下面: ②每次只能向左或向下,越过一个方格,跳到下一个方格中: ③被越过的方格中的数值,表示该兔子越过 ...

  7. Nginx与负载均衡

    Nginx,首先是一款轻量级的Web服务器,其特点是占有内存少,并发能力强,大厂用户有:百度.新浪.网易.腾讯等.其次,它是一款反向代理服务器:第三,它还是一款电子邮件(IMAP/POP3)代理服务器 ...

  8. js通俗易懂的&&与||或运算

    使用&&将返回第一个条件为假的值. 如果每个操作数的计算值都为true, 则返回最后一个计算过的表达式. let one = 1, two = 2, three = 3;console ...

  9. 关于将多个json对象添加到数组中的测试

    如果用数组push添加不到数组中的,这个我也不知道是为什么?然后我选择了另一种发放就是从数组出发,逆向添加 最后的数组是这样的: data1=['公司1','公司2','公司3','公司4']; ar ...

  10. jq 停止/结束多个ajax请求

    页面按钮: <button id="song">abort</button> 请求: var str = {} str.xhr = $.ajax({ typ ...