这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
train_loss = 0
train_acc = 0
num_correct= 0
for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b]
x, y = x.to(device), y.to(device) model.train()
logits = model(x)
loss = criteon(logits, y) optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += float(loss.item())
train_losses.append(train_loss)
pred = logits.argmax(dim=1)
num_correct += torch.eq(pred, y).sum().float().item()
logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
return num_correct/len(train_loader.dataset), train_loss/len(train_loader)
  • 首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

  • 而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

关于Pytorch中accuracy和loss的计算的更多相关文章

  1. caffe中accuracy和loss用python从log日志里面获取

    import re import pylab as pl import numpy as np if __name__=="__main__": accuracys=[] loss ...

  2. pytorch中多个loss回传的参数影响示例

    写了一段代码如下: import torch import torch.nn as nn import torch.nn.functional as F class Test(nn.Module): ...

  3. 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数

    分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...

  4. 转pytorch中训练深度神经网络模型的关键知识点

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/articl ...

  5. 【PyTorch】PyTorch中的梯度累加

    PyTorch中的梯度累加 使用PyTorch实现梯度累加变相扩大batch PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎 https://www.zhihu ...

  6. PyTorch中的Batch Normalization

    Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 ...

  7. 使用PyTorch构建神经网络以及反向传播计算

    使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...

  8. PyTorch中ReLU的inplace

    0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段.该参数的inplace=True的 ...

  9. pytorch中tensorboardX的用法

    在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...

随机推荐

  1. BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理

    推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...

  2. MessagePack Java Jackson 在不关闭输出流(output stream)的情况下序列化多变量

    com.fasterxml.jackson.databind.ObjectMapper 在默认的情况下在写出输入后将会关闭输出流(output stream). 如果你希望序列化多值变量在同一个输出流 ...

  3. poj 2376 Cleaning Shifts 贪心 区间问题

    <pre name="code" class="html"> Cleaning Shifts Time Limit: 1000MS   Memory ...

  4. 如何卸载zabbix且删除

    1.彻底卸载zabbix和删除残留文件 1 2   [root@localhost etc]# service zabbix stop   //这个命令是停止服务 [root@localhost et ...

  5. Hands-on ML and TF Chapter16 Reinforcement Learning

    Policy Granients import tensorflow as tf reset_graph() n_inputs = 4 n_hidden = 4 n_outputs = 1 learn ...

  6. DB 分库分表(1):拆分实施策略和示例演示

    DB 分库分表(1):拆分实施策略和示例演示 第一部分:实施策略 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库schema.一个好的建议是绘制一 ...

  7. 2、记录代码----Ajax

    $.ajax({ url:'/content-engine/index.php/tracker/confirmSendEmail', async: false, //默认为true,同意异步传输 da ...

  8. linux 之 pthread_create 实现类的成员函数做参数

    在C++的类中,普通成员函数不能作为pthread_create的线程函数,如果要作为pthread_create中的线程函数,必须是static ! 在C语言中,我们使用pthread_create ...

  9. c++ / % 四舍五入 向上取整ceil 向下取整floor

     / % 四舍五入 向上取整ceil 向下取整floor #include <math.h> double floor(double x); float floorf(float x); ...

  10. fMRI数据分析处理原理及方法————转自网络

    fMRI数据分析处理原理及方法 来源: 整理文件的时候翻到的,来源已经找不到了囧感觉写得还是不错,贴在这里保存. 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level ...