1. 使用 Thrust

Thrust 是一个开源的 C++ 库,用于开发高性能并行应用程序,以 C++ 标准模板库为蓝本实现。

官方文档见这里:CUDA Thrust

/* ... */

float *fMatrix_Device; // 指向设备显存

int iMatrixSize = iRow * iCol; // 矩阵元素个数

cudaMalloc((void**)&fMatrix_Device, iMatrixSize * sizeof(float)); // 在显存中为矩阵开辟空间

cudaMemcpy(fMatrix_Device, fMatrix_Host, iMatrixSize * sizeof(float), cudaMemcpyHostToDevice); // 将数据拷贝到显存

thrust::device_ptr<float> dev_ptr(fMatrix_Device);

float thrustResult = thrust::reduce(dev_ptr, dev_ptr + size_t(iMatrixSize), (float)0, thrust::plus<float>());

其中,fMatrix_Host 为指向主机内存的矩阵的头指针。

2. 我的 Reduction

/**

* 每个 warp 自动同步,不用 __syncthreads();

* volatile : 加上关键字volatile的变量将被定义为敏感变量,意思是加了volatile

*            的变量在内存中的值可能会随时发生变化,当程序要去读取这个变量时,

             必须要从内存中读取,而不是从缓存中读取

* sdata  数组头指针,数组位于共享内存

* tid    线程索引

*/

__device__ void warpReduce(volatile float *sdata, int tid)

{

    sdata[tid] += sdata[tid + 32];

    sdata[tid] += sdata[tid + 16];

    sdata[tid] += sdata[tid + 8];

    sdata[tid] += sdata[tid + 4];

    sdata[tid] += sdata[tid + 2];

    sdata[tid] += sdata[tid + 1];

}

/**

* 优化:解决了 reduce3 中存在的多余同步操作(每个warp默认自动同步)。

* globalInputData  输入数据,位于全局内存

* globalOutputData 输出数据,位于全局内存

*/

__global__ void reduce4(float *globalInputData, float *globalOutputData, unsigned int n)

{

    __shared__ float sdata[BLOCK_SIZE];

    // 坐标索引

    unsigned int tid = threadIdx.x;

    unsigned int index = blockIdx.x*(blockDim.x * 2) + threadIdx.x;

    unsigned int indexWithOffset = index + blockDim.x;

    if (index >= n) sdata[tid] = 0;

    else if (indexWithOffset >= n) sdata[tid] = globalInputData[index];

    else sdata[tid] = globalInputData[index] + globalInputData[indexWithOffset];

    __syncthreads();

    // 在共享内存中对每一个块进行规约计算

    for (unsigned int s = blockDim.x / 2; s>32; s >>= 1)

    {

        if (tid < s) sdata[tid] += sdata[tid + s];

        __syncthreads();

    }

    if (tid < 32) warpReduce(sdata, tid);

    // 把计算结果从共享内存写回全局内存

    if (tid == 0) globalOutputData[blockIdx.x] = sdata[0];

}

/**

* 计算 reduce4 函数的时间

* fMatrix_Host  矩阵头指针

* iRow          矩阵行数

* iCol          矩阵列数

* @return       和

*/

float RuntimeOfReduce4(float *fMatrix_Host, const int iRow, const int iCol)

{

    float *fReuslt = (float*)malloc(sizeof(float));;

    float *fMatrix_Device; // 指向设备显存

    int iMatrixSize = iRow * iCol; // 矩阵元素个数

    cudaMalloc((void**)&fMatrix_Device, iMatrixSize * sizeof(float)); // 在显存中为矩阵开辟空间

    cudaMemcpy(fMatrix_Device, fMatrix_Host, iMatrixSize * sizeof(float), cudaMemcpyHostToDevice); // 将数据拷贝到显存

    /* ... */

    for (int i = 1, int iNum = iMatrixSize; i < iMatrixSize; i = 2 * i * BLOCK_SIZE)

    {

        int iBlockNum = (iNum + (2 * BLOCK_SIZE) - 1) / (2 * BLOCK_SIZE);

        reduce4<<<iBlockNum, BLOCK_SIZE>>>(fMatrix_Device, fMatrix_Device, iNum);

        iNum = iBlockNum;

    }

    cudaMemcpy(fReuslt, fMatrix_Device, sizeof(float), cudaMemcpyDeviceToHost); // 将数据拷贝到内存

    /* ... */

    cudaFree(fMatrix_Device);// 释放显存空间

    return fReuslt[0];

}

上述程序是优化的最终版本,优化的主要内容包括:

1. 避免每个 Warp 中出现分支导致效率低下。 

2. 减少取余操作。 

3. 减小不必要的同步操作,每个warp都是默认同步的,不用额外的同步操作。 

4. 减小线程的闲置,提高并行度

3. 时间对比

数据的大小为:

iRow = 1000; 

iCol = 1000;

时间为:

ReduceThrust 的运行时间为:0.179968ms.

494497

Reduce0 的运行时间为:0.229152ms.

494497

Reduce1 的运行时间为:0.134816ms.

494497

Reduce2 的运行时间为:0.117504ms.

494497

Reduce3 的运行时间为:0.086016ms.

494497

Reduce4 的运行时间为:0.07424ms.

494497

CPU的运行时间为:1 ms.

494497

数据的大小为:

iRow = 2000; 

iCol = 2000;

时间为:

ReduceThrust 的运行时间为:0.282944ms.

1.97828e+006

Reduce0 的运行时间为:0.779776ms.

1.97828e+006

Reduce1 的运行时间为:0.42624ms.

1.97828e+006

Reduce2 的运行时间为:0.343744ms.

1.97828e+006

Reduce3 的运行时间为:0.217248ms.

1.97828e+006

Reduce4 的运行时间为:0.160416ms.

1.97828e+006

CPU的运行时间为:3 ms.

1.97828e+006

数据的大小为:

iRow = 4000; 

iCol = 4000;

时间为:

ReduceThrust 的运行时间为:0.536832ms.

7.91319e+006

Reduce0 的运行时间为:2.9919ms.

7.91319e+006

Reduce1 的运行时间为:1.56054ms.

7.91319e+006

Reduce2 的运行时间为:1.26618ms.

7.91319e+006

Reduce3 的运行时间为:0.726016ms.

7.91319e+006

Reduce4 的运行时间为:0.531712ms.

7.91319e+006

CPU的运行时间为:11 ms.

7.91319e+006

数据的大小为:

iRow = 6000; 

iCol = 6000;

时间为:

ReduceThrust 的运行时间为:0.988992ms.

1.7807e+007

Reduce4 的运行时间为:1.09286ms.

1.7807e+007

CPU的运行时间为:25 ms.

1.7807e+007

数据的大小为:

iRow = 11000; 

iCol = 11000;

时间为:

ReduceThrust 的运行时间为:2.9208ms.

5.98583e+007

Reduce4 的运行时间为:3.36998ms.

5.98583e+007

CPU的运行时间为:85 ms.

5.98583e+007

从上可以看出,2 中介绍的几种优化方式取得了良好的效果;另外,当数据量较少时,我自己优化的规约函数比 Thrust 中的规约更高效,但是当数据量大于 4000 * 4000 时,Thrust 更高效,因此还有优化的空间。

4. 完整代码

GitHub

【CUDA开发】 CUDA Thrust 规约求和的更多相关文章

  1. CUDA开发 - CUDA 版本

    "CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: ...

  2. 【CUDA开发】Thrust库

    Thrust库从C++的STL中得到灵感,将最简单的类似于STL的结构放在Thrust库中,比如STL中的vector.此外,Thrust库还包含STL中的算法和迭代器.        Thrust函 ...

  3. Windows平台CUDA开发之前的准备工作

    CUDA是NVIDIA的GPU开发工具,眼下在大规模并行计算领域有着广泛应用. windows平台上面的CUDA开发之前.最好去NVIDIA官网查看说明,然后下载对应的driver. ToolKits ...

  4. 【ARM-Linux开发】【CUDA开发】【深度学习与神经网络】Jetson Tx2安装相关之三

    JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和J ...

  5. 【CUDA开发】CUDA面内存拷贝用法总结

    [CUDA开发]CUDA面内存拷贝用法总结 标签(空格分隔): [CUDA开发] 主要是在调试CUDA硬解码并用D3D9或者D3D11显示的时候遇到了一些代码,如下所示: CUdeviceptr g_ ...

  6. 【CUDA开发】CUDA编程接口(一)------一十八般武器

    子曰:工欲善其事,必先利其器.我们要把显卡作为通用并行处理器来做并行算法处理,就得知道CUDA给我提供了什么样的接口,就得了解CUDA作为通用高性能计算平台上的一十八般武器.(如果你想自己开发驱动,自 ...

  7. 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试

    [神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...

  8. 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...

  9. 【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结

    原文链接:https://developer.nvidia.com/ffmpeg GPU-accelerated video processing integrated into the most p ...

随机推荐

  1. web项目由http升级https

    用到的相关方法主要是使用openssl加jdk的keytool 进行密钥签名与管理 1.服务器登陆weblogic 用户,维护ssl工作目录cd /weblogic/sslcert/mkdir cer ...

  2. EF 批量添加数据

    原文:https://www.cnblogs.com/liuruitao/p/10049191.html 原文:https://www.cnblogs.com/yaopengfei/p/7751545 ...

  3. [人物存档]【AI少女】【捏脸数据】活泼少女

    AISChaF_20191028022750507.png

  4. tomcat下载与安装

    https://www.cnblogs.com/limn/p/9358657.html

  5. 分析 JUnit 框架源代码

    本文转载至http://www.ibm.com/developerworks/cn/java/j-lo-junit-src/ 分析 JUnit 框架源代码 理解 JUnit 测试框架实现原理和设计模式 ...

  6. Latex里的引用定理只出现编号,不出现定理名?

    在前面先定义了: \newtheorem{prb}{Problem Formulation} 然后: \begin{prb} \label{problem} xx\end{prb}效果: Proble ...

  7. vue-property-decorator知识梳理

    仓库地址: /* npm 仓库地址 */ // https://www.npmjs.com/package/vue-property-decorator /* github地址 */ // https ...

  8. C++入门经典-例9.3-类模板,简单类模板

    1:使用template关键字不但可以定义函数模板,而且可以定义类模板.类模板代表一族类,它是用来描述通用数据类型或处理方法的机制,它使类中的一些数据成员和成员函数的参数或返回值可以取任意数据类型.类 ...

  9. 2018-2019-2 20165215《网络对抗技术》Exp9 :Web安全基础

    目录 实验目的及内容 实验过程记录 一.Webgoat安装 二. 注入缺陷(Injection Flaws) (一)命令注入(Command Injection) (二)数字型注入(Numeric S ...

  10. vue 指示点的疑点拓展

    1. 为什么 vue 组件中的 data 是一个函数 1. 为了保证组件的独立性和可复用性,data 是一个函数,组件实例的时候,这个函数将会被调用,返回一个对象,计算机会给这个对象分配一个内存地址, ...