python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

混合分类器,逻辑回归,支持向量,knn

multiple_classifier.py

# -*- coding: utf-8 -*-
"""
Created on Sat Jan 6 18:02:19 2018 @author: daxiong
""" #导入sklearn测试数据库
from sklearn import datasets
#用于训练数据和测试数据分类
from sklearn.cross_validation import train_test_split
#导入逻辑回归分类器
from sklearn.linear_model import LogisticRegression
#导入knn分类器
from sklearn.neighbors import KNeighborsClassifier
#导入支持向量分类器
from sklearn.svm import SVC #加载 iris 的数据,把属性存在 X,类别标签存在 y
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target #把数据集分为训练集和测试集,其中 test_size=0.3,即测试集占总数据的 30%
X_train, X_test, y_train, y_test = train_test_split(
iris_X, iris_y, test_size=0.3) #建立逻辑回归分类器
model_logistic=LogisticRegression()
# 把数据交给模型训练
model_logistic.fit(X_train, y_train) #建立knn分类器
model_knn = KNeighborsClassifier()
#训练
model_knn.fit(X_train, y_train) #建立支持向量分类器
modle_svc = SVC()
# 把数据交给模型训练
modle_svc.fit(X_train, y_train) #模型评分
print('Score: %.2f' % model_logistic.score(X_test, y_test)) print('Score: %.2f' % model_knn.score(X_test, y_test))
print('Score: %.2f' % modle_svc.score(X_test, y_test))

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

sklearn4_混合分类器的更多相关文章

  1. Adaboost 算法

    一 Boosting 算法的起源 boost 算法系列的起源来自于PAC Learnability(PAC 可学习性).这套理论主要研究的是什么时候一个问题是可被学习的,当然也会探讨针对可学习的问题的 ...

  2. Adaboost 2

    本文不定期更新.原创文章,转载请注明出处,谢谢. Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类 ...

  3. adaboost算法

    三 Adaboost 算法 AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器.(很多博客里说的三个臭皮匠 ...

  4. 【机器学习笔记之四】Adaboost 算法

    本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成 ...

  5. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

  6. Adaboost 算法实例解析

    Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由 ...

  7. 浅谈 Adaboost 算法

    http://blog.csdn.net/haidao2009/article/details/7514787 菜鸟最近开始学习machine learning.发现adaboost 挺有趣,就把自己 ...

  8. 【软件分析与挖掘】ELBlocker: Predicting blocking bugs with ensemble imbalance learning

    摘要: 提出一种方法——ELBlocker,用于自动检测出Blocking Bugs(prevent other bugs from being fixed). 难度在于这些Blocking Bugs仅 ...

  9. 数据挖掘算法学习(八)Adaboost算法

    本文不定期更新.原创文章,转载请附上链接http://blog.csdn.net/iemyxie/article/details/40423907 谢谢 Adaboost是一种迭代算法,其核心思想是针 ...

随机推荐

  1. 第十章、json和pickle模块

    目录 第十章.json和pickle模块 一.序列化 二.json 三.pickle模块 第十章.json和pickle模块 一.序列化 把对象(变量)从内存中变成可存储或传输的过程称之为序列化, 序 ...

  2. 第十三章·Kibana深入-使用地图统计客户端IP

    地址库 在ELK中,我们可以使用地址库,来对IP进行分析,对日志进行分析,在ELKstack中只有Logstash可以做到,但是出图,是Kibana来出的,所以我们首先需要下载地址库数据文件,然后对L ...

  3. weakref:对象的弱引用

    介绍 weakref支持对象的弱引用,正常的引用会增加对象的引用计数,并避免它被垃圾回收.但结果并不是总和期望的那样,比如有时候可能会出现一个循环引用,或者有时候需要内存时可能要删除对象的缓存.而弱引 ...

  4. The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...

  5. Python:面向对象编程2

    types.MethodType __slot__ @property,  @xxx.setter Python的多重继承和MinIn 如何在class创建后,给实例绑定属性和方法? (动态绑定/定义 ...

  6. 网络资源url转化为file对象下载文件

    注:只测试过网络图片资源. 一.使用org.apache.commons.io.FileUtils 二. 三.httpURLConnection.disconnect(); 四. import org ...

  7. postConstruct执行过程

    使用@PostConstruct注解修饰的方法会在服务器加载Servlet时运行,并且只会执行一次,在构造函数之后,在init方法之前执行: 执行的顺序一次是:构造函数-->autowired依 ...

  8. 10-SQLServer中统计信息的使用

    一.总结 1.网址https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-stats-tr ...

  9. ajax给增删修加入非空

    <span>标签加入 <script type="text/javascript"> $(".inp2").click(function ...

  10. h5 rem计算

    设置html默认font-size: 100px,此时默认的页面的width是750px,然后根据手机大小改变html节点的font-size,从而改变rem的大小,代码如下: <script& ...