BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)
题意

N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106
题解
建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高度为该节点记录的那一列高度-父节点那一列高度。
然后就可以随便DP了。
如果不会笛卡尔树,看看这张图,再看看代码就懂了(简单的笛卡尔树)。

代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 505;
const int mod = 1e9 + 7;
const int MAXV = 1000005;
int n, k, rt, ch[MAXN][2], h[MAXN], tot, sz[MAXN];
int f[MAXN][MAXN], fac[MAXV], inv[MAXV];
inline int C(int N, int M) { return N < M ? 0 : 1ll * fac[N] * inv[M] % mod * inv[N-M] % mod; }
void ins(int &x, int v) {
if(!x) { h[x = ++tot] = v, sz[x] = 1; return; }
if(v >= h[x]) ins(ch[x][1], v);
else ch[++tot][0] = x, x = tot, h[tot] = v;
sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
}
void dfs(int x, int ff) {
if(ch[x][0]) dfs(ch[x][0], x);
if(ch[x][1]) dfs(ch[x][1], x);
for(int i = 0; i <= sz[ch[x][0]]; ++i)
for(int j = 0; j <= sz[ch[x][1]]; ++j)
f[x][i+j] = (f[x][i+j] + 1ll * f[ch[x][0]][i] * f[ch[x][1]][j] % mod) % mod;
for(int i = sz[x]; i >= 0; --i)
for(int j = 1; j <= i && j <= h[x]-h[ff]; ++j)
f[x][i] = (f[x][i] + 1ll * f[x][i-j] * C(h[x]-h[ff], j) % mod * C(sz[x]-(i-j), j) % mod * fac[j] % mod) % mod;
}
int main () {
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for(int i = 2; i < MAXV; ++i) inv[i] = 1ll * (mod - mod/i) * inv[mod%i] % mod;
for(int i = 2; i < MAXV; ++i) fac[i] = 1ll * fac[i-1] * i % mod, inv[i] = 1ll * inv[i] * inv[i-1] % mod;
scanf("%d%d", &n, &k);
for(int i = 1, x; i <= n; ++i) scanf("%d", &x), ins(rt, x);
f[0][0] = 1;
dfs(rt, 0);
printf("%d\n", f[rt][k]);
}
BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)的更多相关文章
- bzoj2616: SPOJ PERIODNI——笛卡尔树+DP
不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...
- 洛谷 P5044 - [IOI2018] meetings 会议(笛卡尔树+DP+线段树)
洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) ...
- TopCoder 14084 BearPermutations2【笛卡尔树+dp】
传送:https://vjudge.net/problem/TopCoder-14084 只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区 ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
随机推荐
- java 基础 HashMap 并发扩容问题
存入的数据过多的时候,尤其是需要扩容的时候,在并发情况下是很容易出现问题. resize函数: void resize(int newCapacity) { Entry[] oldTable = ta ...
- Spring Boot开启Druid数据库监控功能
Druid是一个关系型数据库连接池,它是阿里巴巴的一个开源项目.Druid支持所有JDBC兼容的数据库,包括Oracle.MySQL.Derby.PostgreSQL.SQL Server.H2等.D ...
- Python-05-字符串格式化
一.百分号方式 %[(name)][flags][width].[precision]typecode (name) 可选,用于选择指定的key flags 可选,可供选择 ...
- sublime自动格式化方法
Sublime 工具自带代码格式化的功能,但在某些场景下格式化代码后并不是我们想要的代码格式,且是点击保存ctrl+s才触发的格式代码事件,so,为关闭点击ctrl+s格式代码,我们需要改命令 sav ...
- Linux下用命令来执行kettle文件资源库的文件ktr与kjb的方法
转载地址: https://blog.csdn.net/zuolovefu/article/details/78083445 1. 准备工作 一个简单的job,一个简单的trans. trans:读取 ...
- 论坛中的问题:47(等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态)
原文:论坛中的问题:47(等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态) 求助:等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态 http://bbs.csdn.n ...
- RabbitMQ的应用场景
进入正题. 一.异步处理 场景:发送手机验证码,邮件 传统古老处理方式如下图 这个流程,全部在主线程完成,注册->入库->发送邮件->发送短信,由于都在主线程,所以要等待每一步完成才 ...
- 查看IIS错误日志
部署在IIS中的程序,难免出现数据产生异常 在事件查看器中,可以看出来具体的错误信息,代码定位
- vue父子组件传值例子
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- DMA和通道的区别
转:https://wenku.baidu.com/view/7987ae5283c4bb4cf7ecd18e.html