BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)
题意

N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106
题解
建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高度为该节点记录的那一列高度-父节点那一列高度。
然后就可以随便DP了。
如果不会笛卡尔树,看看这张图,再看看代码就懂了(简单的笛卡尔树)。

代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 505;
const int mod = 1e9 + 7;
const int MAXV = 1000005;
int n, k, rt, ch[MAXN][2], h[MAXN], tot, sz[MAXN];
int f[MAXN][MAXN], fac[MAXV], inv[MAXV];
inline int C(int N, int M) { return N < M ? 0 : 1ll * fac[N] * inv[M] % mod * inv[N-M] % mod; }
void ins(int &x, int v) {
if(!x) { h[x = ++tot] = v, sz[x] = 1; return; }
if(v >= h[x]) ins(ch[x][1], v);
else ch[++tot][0] = x, x = tot, h[tot] = v;
sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
}
void dfs(int x, int ff) {
if(ch[x][0]) dfs(ch[x][0], x);
if(ch[x][1]) dfs(ch[x][1], x);
for(int i = 0; i <= sz[ch[x][0]]; ++i)
for(int j = 0; j <= sz[ch[x][1]]; ++j)
f[x][i+j] = (f[x][i+j] + 1ll * f[ch[x][0]][i] * f[ch[x][1]][j] % mod) % mod;
for(int i = sz[x]; i >= 0; --i)
for(int j = 1; j <= i && j <= h[x]-h[ff]; ++j)
f[x][i] = (f[x][i] + 1ll * f[x][i-j] * C(h[x]-h[ff], j) % mod * C(sz[x]-(i-j), j) % mod * fac[j] % mod) % mod;
}
int main () {
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for(int i = 2; i < MAXV; ++i) inv[i] = 1ll * (mod - mod/i) * inv[mod%i] % mod;
for(int i = 2; i < MAXV; ++i) fac[i] = 1ll * fac[i-1] * i % mod, inv[i] = 1ll * inv[i] * inv[i-1] % mod;
scanf("%d%d", &n, &k);
for(int i = 1, x; i <= n; ++i) scanf("%d", &x), ins(rt, x);
f[0][0] = 1;
dfs(rt, 0);
printf("%d\n", f[rt][k]);
}
BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)的更多相关文章
- bzoj2616: SPOJ PERIODNI——笛卡尔树+DP
不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...
- 洛谷 P5044 - [IOI2018] meetings 会议(笛卡尔树+DP+线段树)
洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) ...
- TopCoder 14084 BearPermutations2【笛卡尔树+dp】
传送:https://vjudge.net/problem/TopCoder-14084 只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区 ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
随机推荐
- 038 Android Magicindicator开源框架实现viewpager底部圆形指示器
1.Magicindicator介绍 Magicindicator是一个强大.可定制.易扩展的 ViewPager 指示器框架.是ViewPagerIndicator.TabLayout.PagerS ...
- vue-scroller 滑动组件使用指南
在页面中经常会用到滚动,下拉刷新,下拉加载等功能,vux的scroller可以使用,但是它不再维护,而且要配合load-more组件一起使用.所以一般在项目中我都是用vue-scroller. vue ...
- 剑指offer22:从上往下打印出二叉树的每个节点,同层节点从左至右打印。
1 题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 2 思路和方法 使用一个队列存放节点.先将根节点加入到队列中,然后循环遍历队列中的元素,遍历过程中,访问该节点的左右子节点,再将左 ...
- Redis--hash类型操作命令
哈希类型hash redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象 哈希类型hash——基本命令 hset /hget /hms ...
- 从NV12中裁剪子画面注意事项
1. 裁剪时,Y和UV的地址计算: / **** * pa_yuv_main: yuv首地址 * video_frame.loff: 行偏移量 lineoffset * VDO_SIZE_W.VDO_ ...
- 两个gif图片动画效果
<div className="uploading-animation-tip-wrap"> <img src={require('~/shared/assets ...
- Codeforces Round #222 (Div. 1) (ABCDE)
377A Maze 大意: 给定棋盘, 保证初始所有白格连通, 求将$k$个白格变为黑格, 使得白格仍然连通. $dfs$回溯时删除即可. #include <iostream> #inc ...
- FICO-清帐函数
转载:https://www.cnblogs.com/caizjian/p/8067071.html https://blog.csdn.net/sapliumeng/article/details/ ...
- HANA数据库无法停止
Symptom: 使用命令HDB stop多次,每次报错为timeout ----------------------- sdpadm@PRDDB01:/usr/sap/SDP/HDB66/prder ...
- 如何在SAP云平台ABAP编程环境里把CDS view暴露成OData服务
Jerry 2016年在学习SAP CDS view时,曾经写过一个CDS view的自学系列,其中有一篇提到了一个很方便的注解: @OData.publish: true 加上这个注解的CDS vi ...