开源代码:wakaama

1. LWM2M for IoT

LWM2M(Light Weight Machine-to-Machine)轻量型的通信协议

IoT(Internet of Things)物联网。装置与互联网形成的网络

LWM2M是专门为物联网设备之间提供的轻量型通信协议

2. 特点

  • C/S结构
  • REST架构
  • CoAP协议

3. REST

主要用于web服务,使设计更简洁

REST是设计风格而不是标准

宗旨是所有的事物都有唯一的标识

但是物联网中的很多设备都是资源受限型的,即只有少量的内存空间和有限的计算能力,所以传统的HTTP协议应用在物联网上就显得过于庞大而不适用。所以有了基于REST架构的CoAP协议

4. CoAP

CoAP(Constrained Application Protocol)

CoAP是6LowPAN协议栈中的应用层协议

CoAP是超轻量型协议

CoAP的默认UDP端口号为5683

CoAP详见http://blog.csdn.net/zhangxuechao_/article/details/70331928

5. HTTP资源类

class Resource {
Resource(URI u);
Response get();
Response post(Request r);
Response put(Request r);
Response delete();
}

GET方法检索一个资源的描述

PUT更新资源数据,如果资源不存在的话,则根据此URI创建一个新的资源

DELETE删除资源(包括不存在的)

POST创建一个新资源

6. 数据管理

Object/Instance/Resource

7. object

描述

S.No Resource ID Description Type Access
1 5851 Dimmer Integer 0 -100 R,W
2 5850 On/Off Boolean R,W

举例

8. lwm2m

lwm2m应用了CoAP协议的思想,并且做了一些修改。下面对代码一些介绍



command_desc_t

typedef struct
{
char * name; //cmd name
char * shortDesc; //description
char * longDesc; //long description
command_handler_t callback;
void * userData;
} command_desc_t;

这个结构体的功能是处理命令行的操作。当命令行输入命令时,callback被调用。命令和功能根据个人需求添加修改。最终这些信息都会保存到lwm2m_context_t结构体中

typedef struct
{
#ifdef LWM2M_CLIENT_MODE
lwm2m_client_state_t state;
char * endpointName;
char * msisdn;
char * altPath;
lwm2m_server_t * bootstrapServerList;
lwm2m_server_t * serverList;
lwm2m_object_t * objectList;
lwm2m_observed_t * observedList;
#endif
#ifdef LWM2M_SERVER_MODE
lwm2m_client_t * clientList;
lwm2m_result_callback_t monitorCallback;
void * monitor;
#endif
#ifdef LWM2M_BOOTSTRAP_SERVER_MODE
lwm2m_bootstrap_callback_t bootstrapCallback;
void * bootstrap;
#endif
uint16_t nextMID;
lwm2m_transaction_t * transactionList;
void * userData;
} lwm2m_context_t;

bootstrapServerList:当前代理服务器列表

serverList:当前连接服务器列表

objectList:当前object列表,所有管理数据

observedList:当前observed列表

clientList:所有连接客户端列表

monitorCallback:打印当前状态

monitor:指向lwm2m_context_t

nextMID:监视Resource用

transactionList:代理服务器用到

observed

observed本身是一种状态。当server开启observed,client会开启定时上报功能。如果object数据有更新,client就会主动上报给sever

observed内还有time属性。如果time属性设置了,object更新会在设置时间内上报给server,上报间隔不会大于超时时间



objArray

main函数会默认添加一些object

struct _lwm2m_object_t
{
struct _lwm2m_object_t * next; // for internal use only.
uint16_t objID;
lwm2m_list_t * instanceList;
lwm2m_read_callback_t readFunc;
lwm2m_write_callback_t writeFunc;
lwm2m_execute_callback_t executeFunc;
lwm2m_create_callback_t createFunc;
lwm2m_delete_callback_t deleteFunc;
lwm2m_discover_callback_t discoverFunc;
void * userData;
};

userData:object相关数据

这些object通过lwm2m_configure函数添加到objectList中,这些callback是当object改变时触发

lwm2m_step

不管是文件描述符状态变化,还是有命令行操作,或者是超时时间到了。都会导致while循环走到这里,每次必然要做如下操作:

  • 当前维护时间更新
  • 代理服务器状态更新
  • 服务器状态更新
  • Resource监视的状态更新

lwm2m_handle_packet

客户端收到的包,在这里做进一步处理

coap_parse_message

解析出coap消息。这和标准的coap消息还是有区别的

typedef struct {
uint8_t *buffer; /* pointer to CoAP header / incoming packet buffer / memory to serialize packet */ uint8_t version;
coap_message_type_t type;
uint8_t code;
uint16_t mid; uint8_t options[COAP_OPTION_PROXY_URI / OPTION_MAP_SIZE + 1]; /* Bitmap to check if option is set */ coap_content_type_t content_type; /* Parse options once and store; allows setting options in random order */
uint32_t max_age;
size_t proxy_uri_len;
const uint8_t *proxy_uri;
uint8_t etag_len;
uint8_t etag[COAP_ETAG_LEN];
size_t uri_host_len;
const uint8_t *uri_host;
multi_option_t *location_path;
uint16_t uri_port;
size_t location_query_len;
uint8_t *location_query;
multi_option_t *uri_path;
uint32_t observe;
uint8_t token_len;
uint8_t token[COAP_TOKEN_LEN];
uint8_t accept_num;
uint16_t accept[COAP_MAX_ACCEPT_NUM];
uint8_t if_match_len;
uint8_t if_match[COAP_ETAG_LEN];
uint32_t block2_num;
uint8_t block2_more;
uint16_t block2_size;
uint32_t block2_offset;
uint32_t block1_num;
uint8_t block1_more;
uint16_t block1_size;
uint32_t block1_offset;
uint32_t size;
multi_option_t *uri_query;
uint8_t if_none_match; uint16_t payload_len;
uint8_t *payload; } coap_packet_t;

handle_request

typedef struct
{
uint8_t flag; // indicates which segments are set
uint16_t objectId;
uint16_t instanceId;
uint16_t resourceId;
} lwm2m_uri_t;

根据lwm2m消息管理模式”Object/Instance/Resource”,把uri_path解析到lwm2m_uri_t中

根据flag做相应的操作

dm_handleRequest

请求消息中code有如下四种类型(类似于上面提到的HTTP资源类),object根据类型做相应的操作,刚刚在object中注册的回调将在这里被触发

/* CoAP request method codes */
typedef enum {
COAP_GET = 1,
COAP_POST,
COAP_PUT,
COAP_DELETE
} coap_method_t;

lwm2m_data_serialize

当object回调完成了,需要处理的也在callback处理完了。如果response消息有payload数据。payload封装方式有很多种,lwm2m默认采用的JSON。lwm2m中JSON的数据格式详见internals.h

typedef enum
{
LWM2M_CONTENT_TEXT = 0, // Also used as undefined
LWM2M_CONTENT_LINK = 40,
LWM2M_CONTENT_OPAQUE = 42,
LWM2M_CONTENT_TLV_OLD = 1542, // Keep old value for backward-compatibility
LWM2M_CONTENT_TLV = 11542,
LWM2M_CONTENT_JSON_OLD = 1543, // Keep old value for backward-compatibility
LWM2M_CONTENT_JSON = 11543
} lwm2m_media_type_t;

JSON详见http://blog.csdn.net/zhangxuechao_/article/details/70227888

9. 添加一个object流程

应用lwm2m协议完成你个人的需求,实际就是添加一个object,实际就是完善read/write/execute/create/delete/discover回调函数

  1. 添加object_objectname.c文件,根据源码风格
  2. 添加objectname_data_t结构体到.c
  3. 添加prv_res2tlv函数.c
  4. 添加prv_objectname_read/write/execute/create/delete/discover函数到.c,供server回调使用(根据个人需求)
  5. 添加display_object_objectname函数,供打印使用
  6. 添加get_object_objectname函数,供userData初始化

    设置一个LWM2M_objectname_OBJECT_ID宏,每个object唯一的ID(REST架构思想)
  7. 添加free_object_objectname函数,供userData释放
  8. 添加objArray[LWM2M_objectname_OBJECT_ID]到main函数
  9. 添加free_object_objectname函数到main函数
  10. 添加display_object_objectname函数到prv_display_objects函数
  11. 添加函数声明到lwm2mclient.h中
  12. 添加object_objectname.c到CMakeLists SOURCES变量中

lwm2m协议的更多相关文章

  1. lwm2m 协议

    1.DTLS介绍 1.1 DTLS的作用 互联网先驱们最开始在设计互联网协议时主要考虑的是可用性,安全性是没有考虑在其中的,所以传输层的TCP.UDP协议本身都不具备安全性.SSL/TLS协议是基于T ...

  2. IoT协议LwM2M MQTT与CoAP

    IoT协议LwM2M MQTT与CoAP 一.MQTT 1.概述: MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议, ...

  3. LWM2M简介-学习记录

    1. Lightweight M2M 基础,谁搞出来的 OMA是一家国际组织,因为物联网的兴起, OMA在传统的OMA-DM协议基础之上,提出了LWM2M协议.这个协议基于COAP协议,COAP协议基 ...

  4. 物联网协议CoAP协议学习

    CoAP:Constrained Application Protocol协议是为物联网中资源受限的设备制定的应用层协议,即简化版的基于UDP的HTTP协议.其核心内容为资源抽象.REST式交互可扩展 ...

  5. NB-IOT模组指令AT+NMSTATUS和AT+CGPADDR对比

    1. AT+NMSTATUS,这个指令是用来查询模块在IOT平台的注册情况.注册指的是lwm2m协议里面的注册机制,详细可以参考lwm2m协议. 2. AT+MREGSWT,设置重启之后,自动启动注册 ...

  6. 利尔达NB-IOT模块对接移动onenet平台步骤

    1. 首先登陆浙江移动onenet网站,http://openiot.zj.chinamobile.com/,进入右上角的开发者中心,然后才能看到创建产品 2. 填写产品的信息,其他信息按照个人实际填 ...

  7. 中移物联网onenet入门学习笔记2:中移物联的通信格式

    中移物联网硬件接入协议:LWM2M协议,EDP协议,MQTT协议,HTTP协议,TCP透传,MODBUS协议,JT/T808协议,RCMP协议 8种通信协议的区别在哪? 详细比较 EDP:OneNET ...

  8. 【我的物联网成长记6】由浅入深了解NB-IoT【华为云技术分享】

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/devcloud/article/detai ...

  9. 【我的物联网成长记6】由浅入深了解NB-IoT

    [摘要] 什么是NB-IoT?NB-IoT有什么优势?NB-IoT能做什么?本文将会从NB-IoT技术的发展历程,技术特点,通信协议,应用场景等方面为您全方面解读NB-IoT技术,了解NB-IoT的独 ...

随机推荐

  1. VAE论文学习

    intractable棘手的,难处理的  posterior distributions后验分布 directed probabilistic有向概率 approximate inference近似推 ...

  2. python for test

    for i,value in enumerate(['A', 'B', 'C']) print(i,value)

  3. python读写csv文件的方法(还没试,先记录一下)

    该csv模块定义了以下功能: csv.reader(csvfile,dialect ='excel',** fmtparams ) 返回一个reader对象,它将迭代给定csvfile中的行. csv ...

  4. Flink 异步IO访问外部数据(mysql篇)

    接上篇:[翻译]Flink 异步I / O访问外部数据 最近看了大佬的博客,突然想起Async I/O方式是Blink 推给社区的一大重要功能,可以使用异步的方式获取外部数据,想着自己实现以下,项目上 ...

  5. 解决no module named setuptools

    To install setuptools on Debian: sudo apt-get install python-setuptools For Python 3.x: sudo apt-get ...

  6. 前端研究CSS之文字与特殊符号元素结合的浏览器兼容性总结

    页面布局里总是会有类似 “文字 | 文字” 的设计样式,不同的浏览器存在严重偏差. 有兼容问题就要解决,下面总结了3种解决方案,分享给大家: 一.系统默认的样式 1.元素换行的段落 <div c ...

  7. TS - 问题解决力 - 下篇

    本文是已读书籍的内容摘要,少部分有轻微改动,但不影响原文表达. <麦肯锡工作法 - 个人竞争力提升50%的7堂课> ISBN: 9787508644691 https://book.dou ...

  8. CF1197D Yet Another Subarray Problem

    思路: 使用动态规划,在经典的最大子段和解法基础上进行扩展.dp[i][j]表示以第i个数为结尾,并且长度模m等于j的所有子段的最大cost. 实现: #include <bits/stdc++ ...

  9. 基于python的App UI自动化环境搭建

    Android端Ui 自动化环境搭建 一,安装JDK.SDK 二,添加环境变量 Widows:1.系统变量→新建 JAVA_HOME 变量E:\Java\jdk1.7.0 jdk安装目录 2.系统变量 ...

  10. 多生产者多消费者(第一种方式),基于synchronized,wait,notifyAll

    生产者消费者模式描述的是协调与协作关系.比如一个人正在准备食物(生产者),而另一个人正在吃(消费者),他们使用一个共用 的桌子用于放置盘子和取走盘子,生产者准备食物,如果桌子上已经满了就等待,消费者( ...