1、执行spark-submit时出错

执行任务如下:

# ./spark-submit --class org.apache.spark.examples.SparkPi  /hadoop/spark/examples/jars/spark-examples_2.11-2.4.0.jar 100  

报错如下:

2019-02-22 09:56:26 INFO  StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/1 is now RUNNING
2019-02-22 09:56:26 INFO BlockManagerMaster:54 - Registering BlockManager BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManagerMasterEndpoint:54 - Registering block manager kvm-test:36768 with 366.3 MB RAM, BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManagerMaster:54 - Registered BlockManager BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManager:54 - Initialized BlockManager: BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler@5aae8eb5{/metrics/json,null,AVAILABLE,@Spark}
2019-02-22 09:56:27 INFO EventLoggingListener:54 - Logging events to hdfs://hadoop-cluster/spark/eventLog/app-20190222015626-0020.snappy
2019-02-22 09:56:27 INFO StandaloneSchedulerBackend:54 - SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
2019-02-22 09:56:28 INFO SparkContext:54 - Starting job: reduce at SparkPi.scala:38
2019-02-22 09:56:28 INFO DAGScheduler:54 - Got job 0 (reduce at SparkPi.scala:38) with 100 output partitions
2019-02-22 09:56:28 INFO DAGScheduler:54 - Final stage: ResultStage 0 (reduce at SparkPi.scala:38)
2019-02-22 09:56:28 INFO DAGScheduler:54 - Parents of final stage: List()
2019-02-22 09:56:28 INFO DAGScheduler:54 - Missing parents: List()
2019-02-22 09:56:28 INFO DAGScheduler:54 - Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34), which has no missing parents
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/1 is now EXITED (Command exited with code 1)
2019-02-22 09:56:28 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/1 removed: Command exited with code 1
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/2 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:28 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/2 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/2 is now RUNNING
2019-02-22 09:56:28 INFO BlockManagerMaster:54 - Removal of executor 1 requested
2019-02-22 09:56:28 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 1
2019-02-22 09:56:28 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 1 from BlockManagerMaster.
2019-02-22 09:56:28 INFO MemoryStore:54 - Block broadcast_0 stored as values in memory (estimated size 1936.0 B, free 366.3 MB)
2019-02-22 09:56:28 INFO MemoryStore:54 - Block broadcast_0_piece0 stored as bytes in memory (estimated size 1236.0 B, free 366.3 MB)
2019-02-22 09:56:28 INFO BlockManagerInfo:54 - Added broadcast_0_piece0 in memory on kvm-test:36768 (size: 1236.0 B, free: 366.3 MB)
2019-02-22 09:56:28 INFO SparkContext:54 - Created broadcast 0 from broadcast at DAGScheduler.scala:1161
2019-02-22 09:56:28 INFO DAGScheduler:54 - Submitting 100 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
2019-02-22 09:56:28 INFO TaskSchedulerImpl:54 - Adding task set 0.0 with 100 tasks
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/2 is now EXITED (Command exited with code 1)
2019-02-22 09:56:29 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/2 removed: Command exited with code 1
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/3 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:29 INFO BlockManagerMaster:54 - Removal of executor 2 requested
2019-02-22 09:56:29 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 2
2019-02-22 09:56:29 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/3 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:29 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 2 from BlockManagerMaster.
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/3 is now RUNNING
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/3 is now EXITED (Command exited with code 1)
2019-02-22 09:56:31 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/3 removed: Command exited with code 1
2019-02-22 09:56:31 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 3 from BlockManagerMaster.
2019-02-22 09:56:31 INFO BlockManagerMaster:54 - Removal of executor 3 requested
2019-02-22 09:56:31 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 3
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/4 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:31 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/4 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/4 is now RUNNING
2019-02-22 09:56:33 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/4 is now EXITED (Command exited with code 1)
2019-02-22 09:56:33 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/4 removed: Command exited with code 1
2019-02-22 09:56:33 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 4 from BlockManagerMaster.
2019-02-22 09:56:33 INFO BlockManagerMaster:54 - Removal of executor 4 requested  

从报错看出来,,任务一直在请求,但是executor莫名退出了,日志后面还有一个警告,如下:

2019-02-22 09:42:58 WARN  TaskSchedulerImpl:66 - Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

分析:从这个信息可以看出来,,task没有获取到资源

解决:

第一种情况:资源不足(可能是CPU,也可能是内存),这种情况可以调整内存(driver或者executor)或者CPU大小

例如,按如下调整,很多情况都是executor内存设置的过大,超出了实际的内存大小

# ./spark-submit --class org.apache.spark.examples.SparkPi  --executor-memory 512M --total-executor-cores 2 --driver-memory 512M /hadoop/spark/examples/jars/spark-examples_2.11-2.4.0.jar 100   

第二种情况:也是我遇到的。我有一个spark集群+一个spark客户端,我在spark集群里面执行任务可以正常执行,但是放到spark客户端执行的时候就报错了。机器内存,cpu都足够大。导致错误的原因竟然是主机名和ip对应出错了,

由于spark集群是以前搭建的,今天做了一个spark,忘记在spark集群里面添加spark客户端的主机和ip映射了。添加上好了。

总结:

出现这类问题一般有几个可能的原因,逐一检查排除即可:
 
(1).因为提交任务的节点不能和worker节点交互,因为提交完任务后提交任务节点上会起一个进程,展示任务进度,大多端口为4044,工作节点需要反馈进度给该该端口,所以如果主机名或者IP在hosts中配置不正确。所以检查下主机名和ip是否配置正确。

(2).也有可能是内存不足造成的。内存设置可以根据情况调整下。另外,也检查下web UI看看,确保worker节点处于alive状态。 

2、错误日志如下

19/04/08 23:47:19 ERROR ContextCleaner: Error cleaning broadcast 11700946
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:47)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:62)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:58)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:92)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:76)
at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:148)
at org.apache.spark.broadcast.TorrentBroadcast$.unpersist(TorrentBroadcast.scala:321)
at org.apache.spark.broadcast.TorrentBroadcastFactory.unbroadcast(TorrentBroadcastFactory.scala:45)
at org.apache.spark.broadcast.BroadcastManager.unbroadcast(BroadcastManager.scala:66)
at org.apache.spark.ContextCleaner.doCleanupBroadcast(ContextCleaner.scala:238)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$1.apply(ContextCleaner.scala:194)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$1.apply(ContextCleaner.scala:185)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1.apply$mcV$sp(ContextCleaner.scala:185)
at org.apache.spark.util.Utils$.tryOrStopSparkContext(Utils.scala:1302)
at org.apache.spark.ContextCleaner.org$apache$spark$ContextCleaner$$keepCleaning(ContextCleaner.scala:178)
at org.apache.spark.ContextCleaner$$anon$1.run(ContextCleaner.scala:73)
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:223)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:227)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:220)

同时,日志里面还报了java.lang.OutOfMemoryError: Java heap space

分析:从上面日志分析,是由于spark内存不够,导致gc,gc会使得executor与driver通信中断。

解决:(1)、增加硬件资源 ,修改executor内存;

(2)、增大作业并发度;

(3)、修改spark-defaults.conf ,加大executor通信超时时间spark.executor.heartbeatInterval

spark拍错与优化

spark错误记录总结的更多相关文章

  1. uploadify插件Http Error(302)错误记录(MVC)

    由于项目(asp.net MVC)需要做一个附件上传的功能,使用的是jQuery的Uploadify插件的2.1.0版本,上传文件到自己项目指定的文件夹下面.做完之后,在谷歌上测试是正确的,在火狐上报 ...

  2. 开发错误记录8:Unable to instantiate application com

    开发错误记录8:Unable to instantiate application com.android.tools.fd.runtime.BootstrapApplication 这是因为在And ...

  3. PHP 错误与异常 笔记与总结(5)配置文件中与错误日志相关的选项 && 将错误记录到指定的文件中

    [记录错误(生产环境)] php.ini: ① 开启 / 关闭 错误日志功能 log_errors = On ② 设置 log_errors 的最大字节数 log_errors_max_len = 其 ...

  4. 安装nagios出现的两个错误记录

    最近在安装nagios,出现几个错误记录: 一 检查nagios配置的时候出现错误如下: Warning: Duplicate definition found for host 'kelly' (c ...

  5. [置顶] 利用Global.asax的Application_Error实现错误记录,错误日志

    利用Global.asax的Application_Error实现错误记录 错误日志 void Application_Error(object sender, EventArgs e) { // 在 ...

  6. streamsets 错误记录处理

    我们可以在stage 级别,或者piepline 级别进行error 处理配置 pipeline的错误记录处理 discard(丢踢) send response to Origin pipeline ...

  7. php设置错误,错误记录

    //设置错误级别. error_reporting(E_ALL);  //显示所有错误 error_reporting(E_ALL&~E_NOTICE);  //显示所有错误但不显示提示级别的 ...

  8. 27:简单错误记录SimpleErrorLog

    题目描述 开发一个简单错误记录功能小模块,能够记录出错的代码所在的文件名称和行号. 处理: 1. 记录最多8条错误记录,循环记录,对相同的错误记录(净文件名称和行号完全匹配)只记录一条,错误计数增加: ...

  9. WebSphere中数据源连接池太小导致的连接超时错误记录

    WebSphere中数据源连接池太小导致的连接超时错误记录. 应用连接超时错误信息: [// ::: CST] webapp E com.ibm.ws.webcontainer.webapp.WebA ...

随机推荐

  1. ABP 基于DDD的.NET开发框架 学习(一)

    ABP总体介绍 ABP是ASP.NET Boilerplate Project,ASP.NET样板项目. ABP框架定位于快速开发 ABP是一个用于最快实践和流行开发现代Web应用程序的新起点,旨在成 ...

  2. Asp.netCore 是用的Socket 吗?

    Asp.netCore 是用的Socket 的krestrel 用的是Socket! public static IWebHostBuilder CreateDefaultBuilder(string ...

  3. Ajax调用WebService接口样例

    在做手机端h5的应用时,通过Ajax调用http接口时没啥问题的:但有些老的接口是用WebService实现的,也来不及改成http的方式,这时通过Ajax调用会有些麻烦,在此记录具体实现过程.本文使 ...

  4. 【转载】Request对象的作用以及常见属性

    Request对象是Asp.Net应用程序中非常重要的一个内置对象,其作用主要用于服务器端获取客户端提交过来的相应信息,比较常用的有使用Requset对象获取用户提交的html表单信息,Request ...

  5. unity 刚体

    刚体属性(rigidbody)标明物体受物理影响,包括重力,阻力等等. mass为重量,当大质量物体被小重量物体碰撞时只会发生很小的影响.. Drag现行阻力决定组件在没有发生物理行为下停止移动的速度 ...

  6. c# 输出参数-out

  7. [Golang][Mac]Go 语言学习资料记录

    背景:最近的项目开发语言是GOlang 因此需要做一些简单了解和学习记录 又可以学习一下Google的新语言了,想想有些小激动哦~ 官方网站(需翻墙才能打开,比如用蓝灯)https://golang. ...

  8. HTML&CSS基础-相对定位

    HTML&CSS基础-相对定位 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.HTML源代码 <!DOCTYPE html> <html> &l ...

  9. Redis4.0之持久化存储

    一,redis概述与实验环境说明 1.1 什么是redis redis是一种内存型的NoSQL数据库,优点是快,常用来做缓存用  redis存储数据的方法是以key-value的形式  value类型 ...

  10. REST is not the Best for Micro-Services GRPC and Docker makes a compelling case

    原文:https://hackernoon.com/rest-in-peace-grpc-for-micro-service-and-grpc-for-the-web-a-how-to-908cc05 ...