一、简介

迪杰斯特拉(Dijkstra)算法和弗洛伊德(Flyod)算法均是用于求解有向图或无向图从一点到另外一个点最短路径。

二、Dijkstra

迪杰斯特拉算法也是图论中的明星算法,主要是其采用的动态规划思想,使其在数据结构、算法、离散数学乃至运筹学中都扮演重要的角色。以下图为例:

以A为起点,首先走一步,共有三条边,分别如下:

AB(12),AF(16),AG(14)其中最短的是节点B,将AB(12)放入辅助向量。

接着,各节点均继续向下走,此时可以找出4条边。

ABC(22),ABF(19),AF(16),AG(14),同样找出最小值放入向量中。{AB(12),AG(14)}

此后步骤完全相同

ABC(22),ABF(19),AF(16),AGF(23),AGE(22),选中AF(16)。

同样,接下来的步骤有:ABC(22),AFC(22),AFE(18),AGE(22),选中AFE(18);

ABC(22),AFC(22),AFEC(23),AFED(22),这种情况随便选取一个最小值,以ABC(22)为例;

ABCD(25),AFED(22)选中后者,至此,已经完全找到A和所有节点之间的最短路径及最短路径的长度。

最短路径向量为{AB(12),AG(14),AF(16),AFE(18),ABC(22),AFED(22)}

三、Floyd

弗洛伊德是另外一种求最短路径的方式,与迪杰斯特拉算法不同,弗洛伊德偏重于多源最短路径的求解,即能迪杰斯特拉能够求一个节点到其余所有节点的最短路径,但是弗洛伊德能够求出任意两个节点的最短路径,当然迪杰斯特拉重复N次也能达到目标。两种方式的时间复杂度均为O(n^3),但弗洛伊德形式上会更简易一些。

以下面的有向有权图为例:

老版visio不知道为啥这么糊?

首先写出图的邻接矩阵Adj

  A B C D
A 0 4 2 6
B 5 0 12
C 0 3
D 7 1 0

若想缩短两点间的距离,仅有一种方式,那就是通过第三节点绕行,如果我们假设仅能通过A点绕行,那么仅需判断是否现有的距离Adj[i][j]小于Adj[i][1]+Adj[1][j]的距离,如果有更短的选择,那么进行更新就好了。首先第一行和第一列肯定不会更新,然后对角线也不必更新。【其实通过观察可以知道,第三行也不会进更新,因为C根本无法绕到A】

0 4 2 6
5 0 7 11
0 3
7 1 9 0

接下来,开放绕行节点2,那么就相当于可以经过节点1和2进行绕行。更新条件是Adj[i][j]>Adj[i][2]+Adj[2][j],除去第2行,第2列和对角线不需要进行判断。可以到D到C通过B-A会比仅通过A更短。

0 4 2 6
5 0 7 11
0 3
6 1 8 0

然后开放节点3.

0 4 2 5
5 0 7 10
0 3
6 1 8 0

最后开放节点4.

0 4 2 5
5 0 7 10
9 4 0 3
6 1 8 0

最短路径不适用于负权回路,或负权环,因为每次绕行都会减小最短路径,因此负权回路或者说负权环不存在最短路径。

Dijkstra算法和Floyd算法的更多相关文章

  1. 最短路径——Dijkstra算法和Floyd算法

    Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...

  2. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  3. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  4. 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...

  5. 【转】最短路径——Dijkstra算法和Floyd算法

    [转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径—大话Dijkstra算法和Floyd算法

    Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...

  8. 最短路径—Dijkstra算法和Floyd算法【转】

    本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...

  9. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  10. 【转载】最短路径—Dijkstra算法和Floyd算法

    注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...

随机推荐

  1. 前端入门系列之CSS

    CSS (Cascading Style Sheets) 是用来样式化和排版你的网页的 —— 例如更改网页内容的字体.颜色.大小和间距,将内容分割成多列或者加入动画以及别的装饰型效果. CSS是什么 ...

  2. bzoj3624(Apio2008):免费道路

    题目↓ Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output 3 2 0 4 3 0 5 3 1 1 2 ...

  3. vba Excel连接数据库

    PostgreSql: 第一步 在网上下载postres的驱动程序,之后安装,下载地址:https://www.devart.com/odbc/postgresql/download.html 第二步 ...

  4. layui监听复选按钮点击

    layui.form.on('checkbox(resultQuery)', function(data){ console.log(data.elem); //得到checkbox原始DOM对象 c ...

  5. python lanbda匿名函数(20)

    在python开发中常规的函数在调用之前都需要先声明,而python还有一种匿名函数,有速写函数的功能并且匿名函数不需要声明也没有函数名字,完全不需要担心函数名冲突,具体的妙用还需要从实战练习中多多积 ...

  6. 数据库相关概念讲解(java)

    1.常用类或接口介绍 1.DataSource接口 通过javaAPI中javax.sql.DataSource接口注释了解. 1.DataSource功能 如下图: 翻译: DataSource对象 ...

  7. LC 206. Reverse Linked List

    题目描述 Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5-> ...

  8. WEBservice的浏览器及元素的常用函数及变量整理总结 (selenium )

    由于网页自动化要操作浏览器以及浏览器页面元素,这里笔者就将浏览器及页面元素常用的函数及变量整理总结一下,以供读者在编写网页自动化测试时查阅. from selenium import webdrive ...

  9. 20190705-Python数据驱动之DDT

    DDT ddt 是第三方模块,需安装, pip install ddt DDT包含的装饰器 包含一个类装饰器@ddt和两个方法装饰器@data和@file_data 通常情况下,@data中的数据按照 ...

  10. 安全篇-AES/RSA加密机制

    在服务器与终端设备进行HTTP通讯时,常常会被网络抓包.反编译(Android APK反编译工具)等技术得到HTTP通讯接口地址和参数.为了确保信息的安全,我们采用AES+RSA组合的方式进行接口参数 ...