Diagonal Walking v.2

CodeForces - 1036B

Mikhail walks on a Cartesian plane. He starts at the point (0,0)(0,0), and in one move he can go to any of eight adjacent points. For example, if Mikhail is currently at the point (0,0)(0,0), he can go to any of the following points in one move:

  • (1,0)(1,0);
  • (1,1)(1,1);
  • (0,1)(0,1);
  • (−1,1)(−1,1);
  • (−1,0)(−1,0);
  • (−1,−1)(−1,−1);
  • (0,−1)(0,−1);
  • (1,−1)(1,−1).

If Mikhail goes from the point (x1,y1)(x1,y1) to the point (x2,y2)(x2,y2) in one move, and x1≠x2x1≠x2 and y1≠y2y1≠y2, then such a move is called a diagonal move.

Mikhail has qq queries. For the ii-th query Mikhail's target is to go to the point (ni,mi)(ni,mi) from the point (0,0)(0,0) in exactly kiki moves. Among all possible movements he want to choose one with the maximum number of diagonal moves. Your task is to find the maximum number of diagonal moves or find that it is impossible to go from the point (0,0)(0,0) to the point (ni,mi)(ni,mi) in kiki moves.

Note that Mikhail can visit any point any number of times (even the destination point!).

Input

The first line of the input contains one integer qq (1≤q≤1041≤q≤104) — the number of queries.

Then qq lines follow. The ii-th of these qq lines contains three integers nini, mimi and kiki (1≤ni,mi,ki≤10181≤ni,mi,ki≤1018) — xx-coordinate of the destination point of the query, yy-coordinate of the destination point of the query and the number of moves in the query, correspondingly.

Output

Print qq integers. The ii-th integer should be equal to -1 if Mikhail cannot go from the point (0,0)(0,0) to the point (ni,mi)(ni,mi) in exactly kiki moves described above. Otherwise the ii-th integer should be equal to the the maximum number of diagonal moves among all possible movements.

Example

Input

32 2 34 3 710 1 9

Output

16-1

Note

One of the possible answers to the first test case: (0,0)→(1,0)→(1,1)→(2,2)(0,0)→(1,0)→(1,1)→(2,2).

One of the possible answers to the second test case: (0,0)→(0,1)→(1,2)→(0,3)→(1,4)→(2,3)→(3,2)→(4,3)(0,0)→(0,1)→(1,2)→(0,3)→(1,4)→(2,3)→(3,2)→(4,3).

In the third test case Mikhail cannot reach the point (10,1)(10,1) in 9 moves.

题意:

为了防止比赛被ak!为了守护世界的和平!我们!贯彻爱与真实的险恶!恩爱又迷人的出题组!!决定!!!把zzq抓起来,放到一个荒无人烟岛上。zzq所在的位置是(0,0),而离开荒岛的传送阵在(n,m),zzq的体力值只够他走k步,zzq每次可以走8个方向。

(1,0)

(1,1)

(0,1)

(−1,1)

(−1,0)

(−1,−1)

(0,−1)

(1,−1)

但是温柔善良的大魔王SYH怎么会让zzq轻易的逃离荒岛,所以她希望zzq尽量多地往斜方向走,传送阵仅在第k秒开启,口令就是zzq最多可以往斜方向走的步数。

可怜的zzq被土拨鼠吸走了所有的脑细胞,于是他打电话给你想让你帮他解出口令。

思路:

如果 x > y 先swap(x,y),交换xy并不影响答案。

然后 先从( 0 ,0 )走到(x,x)

然后再竖直向上走,

我们令z=k-x,

如果剩下的路程 y=(y-x)

那么接下来

如果y和z都是奇数,用z中的一个1,走y中的一个单位。

两者都变成偶数,而偶数可以通过这样的走法使剩下的全部z都走歇着的。

否则如果y和z中只有一个是奇数,用z中的偶数部分去全走斜的,答案再必须减去1.

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int q;
ll x, y, k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
scanf("%d", &q);
while (q--)
{
scanf("%lld %lld %lld", &x, &y, &k);
if (x > y)
{
swap(x, y);
}
ll z = k - x;
y -= x;
if (z < y)
{
printf("-1\n");
} else
{
if (z & 1)
x += z - 1;
else
x += z;
if (y & 1)
{
y = 1;
} else
{
y = 0;
}
if (z & 1)
{
z = 1;
} else
{
z = 0;
}
if (z & y)
{ } else if (z + y)
{
x--;
}
printf("%lld\n", x );
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Diagonal Walking v.2 CodeForces - 1036B (思维,贪心)的更多相关文章

  1. codeforces 1036B - Diagonal Walking v.2【思维+构造】

    题目:戳这里 题意:起点(0,0),终点(n,m),走k步,可以走8个方向,问能不能走到,能走到的话最多能走多少个斜步. 解题思路:起点是固定的,我们主要分析终点.题目要求走最多的斜步,斜步很明显有一 ...

  2. CF 1036B Diagonal Walking v.2——思路

    题目:http://codeforces.com/contest/1036/problem/B 比赛时只能想出不合法的情况还有走到终点附近的方式. 设n<m,不合法就是m<k.走到终点方式 ...

  3. Buy Low Sell High CodeForces - 867E (思维,贪心)

    大意: 第i天可以花$a_i$元买入或卖出一股或者什么也不干, 初始没钱, 求i天后最大收益 考虑贪心, 对于第$x$股, 如果$x$之前有比它便宜的, 就在之前的那一天买, 直接将$x$卖掉. 并不 ...

  4. CF 1036 B Diagonal Walking v.2 —— 思路

    题目:http://codeforces.com/contest/1036/problem/B 题意:从 (0,0) 走到 (n,m),每一步可以向八个方向走一格,问恰好走 k 步能否到达,能到达则输 ...

  5. Codeforces 922 思维贪心 变种背包DP 质因数质数结论

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  6. Codeforces 1093C (思维+贪心)

    题面 传送门 题目大意: 有一个长n(n为偶数)的序列a 已知a满足 \(a_1≤a_2≤⋯≤a_n\) 给出一个长度为\(\frac{n}{2}\) 的序列b,定义\(b_i=a_i+a_{n-i+ ...

  7. B. Diagonal Walking v.2

    链接 [https://i.cnblogs.com/EditPosts.aspx?opt=1] 题意 二维平面从原点出发k步,要到达的点(x,y),每个位置可以往8个方位移动,问到达目的地最多可以走多 ...

  8. Sorted Adjacent Differences(CodeForces - 1339B)【思维+贪心】

    B - Sorted Adjacent Differences(CodeForces - 1339B) 题目链接 算法 思维+贪心 时间复杂度O(nlogn) 1.这道题的题意主要就是让你对一个数组进 ...

  9. Codeforces Round #768 (Div. 2) D. Range and Partition // 思维 + 贪心 + 二分查找

    The link to problem:Problem - D - Codeforces   D. Range and Partition  time limit per test: 2 second ...

随机推荐

  1. axios中的qs介绍

    首先qs是一个npm仓库所管理的包,可通过npm install qs命令进行安装. 地址: https://www.npmjs.com/package/qs qs.parse().qs.string ...

  2. vue 基础介绍

    0.MVVM 什么是MVVM?就是Model-View-ViewModel. ViewModel是Vue.js的核心,它是一个Vue实例. 1.基础示例 代码: <!DOCTYPE html&g ...

  3. PHP学习(8)——面向对象(下)

    8.编写代码类 每个分离的函数可以执行一个明确的任务.任务越简单,编写与测试这个函数就越简单,当然也不要将这个函数分得太小——若将程序分成太多的小个体,读起来就会很困难. 使用继承可以重载操作.我们可 ...

  4. 基于vue-cli项目打包慢的定位优化过程

    入职一周后,上一个前端就离职了(超级坑爹的),留下了一个比较棘手的问题,就是基于vue-cli的项目打包超级慢,我接手项目的时候,打包需要45min(上个离职者也不知道原因),经过3个月之后,随着项目 ...

  5. fastadmin model关联模型 关联查询问题

    一对一关联 public function getGoodName(){ return $this->belongsTo('app\api\model\goods\Good','goods_go ...

  6. nginx 增加认证

    1.检查工具是否安装,如果未安装则使用yum安装 #htpasswd 有以上输出表示已经安装,如果没有按装,使用如下命令安装: #yum -y install httpd-tools 2.htpass ...

  7. Redis(1.1)linux下安装redis

    一.常见安装方式 [0]环境 OS:CentOS7.5 Redis:4.0.14 yum源:本地源 [1]检查安装 gcc 依赖环境 gcc -v#如果没安装会报错类似于 command not fi ...

  8. GitHub 将源代码保存在北极洞穴,至少使用 1000 年!

    最近,GitHub分享了开放Arctic Code Vault的计划,该计划旨在存储和保存Flutter和TensorFlow等开源软件. 所有开放源代码项目的代码都将存储在胶片上,该胶片每帧包含88 ...

  9. 取整math函数

    floor(a); ceil(a);  

  10. 高性能MySQL3_笔记0

    该书2015年5月出版的,实际上已经有些老了,但是经典的东西还是经典. 该书一共16章 1.Mysql的架构与历史 2.Mysql基准测试 3.服务器性能剖析 4.Schema与数据类型优化 5.创建 ...