TensorFlow指定GPU/CPU进行训练和输出devices信息
TensorFlow指定GPU/CPU进行训练和输出devices信息
1.在tensorflow代码中指定GPU/CPU进行训练
with tf.device('/gpu:0'):
....
with tf.device('/gpu:1'):
...
with tf.device('/cpu:0'):
...
2.输出devices的信息
在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息
进入Python环境
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
输出以下信息:
2019-05-23 20:12:47.415412: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-05-23 20:12:47.509275: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-05-23 20:12:47.509632: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x14b6e60 executing computations on platform CUDA. Devices:
2019-05-23 20:12:47.509660: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce MX150, Compute Capability 6.1
2019-05-23 20:12:47.529891: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
2019-05-23 20:12:47.530293: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1b7b140 executing computations on platform Host. Devices:
2019-05-23 20:12:47.530318: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2019-05-23 20:12:47.530451: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce MX150 major: 6 minor: 1 memoryClockRate(GHz): 1.341
pciBusID: 0000:01:00.0
totalMemory: 1.96GiB freeMemory: 1.92GiB
2019-05-23 20:12:47.530468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-05-23 20:12:47.531469: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-23 20:12:47.531487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-05-23 20:12:47.531494: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-05-23 20:12:47.531563: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/device:GPU:0 with 1738 MB memory) -> physical GPU (device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 1736381910647465363
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 10300285037066135290
physical_device_desc: "device: XLA_GPU device"
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 6680013036417599682
physical_device_desc: "device: XLA_CPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 1823080448
locality {
bus_id: 1
links {
}
}
incarnation: 7894169161128462449
physical_device_desc: "device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1"
]
找到对应devices的name,复制双引号下的名字,替换第1的代码中的单引号的内容,就可以指定对应的设备进行训练了。
TensorFlow指定GPU/CPU进行训练和输出devices信息的更多相关文章
- TensorFlow指定GPU使用及监控GPU占用情况
查看机器上GPU情况 命令: nvidia-smi 功能:显示机器上gpu的情况 命令: nvidia-smi -l 功能:定时更新显示机器上gpu的情况 命令:watch -n 3 nvidia-s ...
- Keras/Tensorflow选择GPU/CPU运行
首先,导入os,再按照PCI_BUS_ID顺序,从0开始排列GPU, import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_B ...
- 指定Gpu range系列函数
tensorflow指定GPU训练 import os os.environ[CUDA_VISIABLE_DEVICES] = '0,1'记住DEVICES是复数 range()返回的是range o ...
- [转] pytorch指定GPU
查过好几次这个命令,总是忘,转一篇mark一下吧 转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如 ...
- TensorFlow指定CPU和GPU方法
TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow ...
- TensorFlow——tensorflow指定CPU与GPU运算
1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用 ...
- 安装 tensorflow 1.1.0;以及安装其他相似版本tensorflow遇到的问题;tensorflow 1.13.2 cuda-10环境变量配置问题;Tensorflow 指定训练时如何指定使用的GPU;
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量expo ...
- Tensorflow检验GPU是否安装成功 及 使用GPU训练注意事项
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. imp ...
- tensorflow 指定使用gpu处理,tensorflow占用多个GPU但只有一个在跑
我们在刚使用tensorflow的过程中,会遇到这个问题,通常我们有多个gpu,但是 在通过nvidia-smi查看的时候,一般多个gpu的资源都被占满,但是只有一个gpu的GPU-Util 和 21 ...
随机推荐
- java 注解@interface
类注解: package com.cglibs; import java.lang.annotation.ElementType; import java.lang.annotation.Retent ...
- eNSP——Hybrid接口的应用
原理: Hybrid接口既可以连接普通终端的接入链路又可以连接交换机间的干道链路,它允许多个VLAN的帧通过,并可以在出接口方向将某些VLAN帧的标签剥掉. Hybrid接口处理VLAN帧的过程如下: ...
- Python报错总结丶自定义报错
Python报错总结: 常见异常 1,NameError: name 'a' is not defined:未定义函数名 2,IndentationError: uninden ...
- kibana 设置登录认证
kibana 设置登录认证 SlowGO 2018.11.21 14:56 字数 59 阅读 658评论 0喜欢 0 kibana 本身没有用户名密码的设置,可以使用 nginx 来实现. 步骤 (1 ...
- [转帖]Oracle 起诉 Google 事件
Oracle 起诉 Google 事件 https://www.cnblogs.com/panchanggui/p/9449842.html Oracle 是世界第二大软件公司 世界第一大DBMS公司 ...
- mybatis 的一对一关联查询association
现在项目的列表查询数据需要查一个总数count, 如果直接写在同一个sql里面,会导致查询速度很慢, 因此,想到使用关联查询,例子如下: 附上代码: 其中遇到的坑哟: 1.association中的s ...
- 关于SpringMVC中的转发与重定向的说明
写的非常详细,参看该地址:https://www.zifangsky.cn/661.html 总结: 1.请求转发:url地址不变,可带参数,如?username=forward 2.请求重定向:ur ...
- 【AtCoder】ARC066
ARC066 C - Lining Up 判断是否合法即可,合法是\(2^{\lfloor \frac{N}{2}\rfloor}\) 不合法就是0 #include <bits/stdc++. ...
- 二维码生成工具类java版
注意:这里我不提供所需jar包的路径,我会把所有引用的jar包显示出来,大家自行Google package com.net.util; import java.awt.BasicStroke; im ...
- 1-MySQL DBA笔记-理解MySQL
第一部分 入门篇 本篇首先介绍MySQL的应用领域.基础架构和版本,然后介绍MySQL的基础知识,如查询的执行过程.权限机制.连接.存储引擎,最后阐述一些基础概念. 第1章 理解MySQL 本章将介绍 ...