Überwatch

题目描述

The lectures are over, the assignments complete and even those pesky teaching assistants have nothing left to criticize about your coding project. Time to play some video games! As always, your procrastinating self has perfect timing: Cold Weather Entertainment just released Überwatch, a competitive first person video game!
Sadly, you aren’t very good at these kind of games. However, Überwatch offers more than just skill based gameplay. In Überwatch you can defeat all opponents in view with a single button press using your ultimate attack. The drawback of this attack is that it has to charge over time before it is ready to use. When it is fully charged you can use it at any time of your choosing.
After its use it immediately begins to charge again.
With this knowledge you quickly decide on a strategy:
• Hide from your opponents and wait for your ultimate attack to charge.
• Wait for the right moment.
• Defeat all opponents in view with your ultimate attack.
• Repeat.
After the game your teammates congratulate you on your substantial contribution. But you wonder: How many opponents could you have defeated with optimal timing?
The game is observed over n time slices. The ultimate attack is initially not charged and requires m time slices to charge. This first possible use of the ultimate attack is therefore in the (m+1)-th time slice. If the ultimate attack is used in the i-th time slice, it immediately begins charging again and is ready to be fired in the (i + m)-th time slice.

输入

The input consists of:
• one line with two integers n and m, where
– n (1 ≤ n ≤ 300 000) is the game duration;
– m (1 ≤ m ≤ 10) is the time needed to charge the ultimate attack in time slices.
• one line with n integers xi (0 ≤ xi ≤ 32) describing the number of opponents in view during a time slice in order.

输出

Output the maximum number of opponents you can defeat.

样例输入

4 2
1 1 1 1

样例输出

1

【题解】

题意说,有一个大招每次放完还需要等待m次,直接考虑dp[i],从开始到i这个时间内获取的最大值。

注意:第一个位置的时候为0,然后如果放完大招后下一次充能从1开始。【题目说得很清楚】

This first possible use of the ultimate attack is therefore in the (m+1)-th time slice.
If the ultimate attack is used in the i-th time slice, it immediately begins charging again and is ready to be fired in the (i + m)-th time slice.

然后直接转移即可。

 #include<bits/stdc++.h>
using namespace std;
const int N = 3e5+;
int dp[N],a[N],n,m;
int main()
{
scanf("%d%d",&n,&m);
//m++;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int res = ;
for(int i=;i<=n;i++){
dp[i] = dp[i-] ;
if( i>=(m+) ){
dp[i] = max( dp[i-m] + a[i] , dp[i] );
res = max( res , dp[i]) ;
}
}
printf("%d\n",res );
return ;
}

【动态规划】Überwatch的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. oracle之nvl,nvl2,decode

    oracle sql常用查询nvl,nvl2,decode区别及使用方法 1,NVL( E1, E2) 如果E1为NULL,则NVL函数返回E2的值,否则返回E1的值,如果两个参数都为NULL ,则返 ...

  2. OpenTK学习笔记(2)-工作窗口的三种方法创建方法(winfrom下类的形式创建)

    参考资料: https://www.codeproject.com/Articles/1167212/OpenGL-with-OpenTK-in-Csharp-Part-Initialize-the- ...

  3. Hive SQL NVL 相关函数

    1.NVL函数 NVL函数的格式如下:NVL(expr1,expr2)含义是:如果oracle第一个参数为空那么显示第二个参数的值,如果第一个参数的值不为空,则显示第一个参数本来的值. NVL(exp ...

  4. error storage size of my_addr isn't known

  5. oracle数据库的存储原理

    表空间,oracle逻缉存储结构,表空间下包含一个或者多个物理的文件存储.所有用户对象存放在表空间中.与系统有关的对象存放在系统表空间中. 数据库的作用就是实现对数据的管理和查询.任何一个数据库系统, ...

  6. SpringBoot表单数据校验

    Springboot中使用了Hibernate-validate作为默认表单数据校验框架 在实体类上的具体字段添加注解 public class User { @NotBlank private St ...

  7. echarts3.0之关系图详解

    近期需要使用echarts关系图,当我打开echarts3.0官方demo后发现,对于新手而言,直接看懂有点儿难度,固写这样一篇文章让自己加深记忆,也便新手迅速上手.话不多说,开整生气! echart ...

  8. css 百分比减去像素

    1)第一种实现方式 @body_center_width: ~`$(document).width()-400+'px'`; #helloworld { width: @body_center_wid ...

  9. Ionic4.x 创建页面以及页面跳转

    创建页面: 1.cd 到项目目录 2.通过ionic g page 页面名称 3.创建完成组件以后会在 src 目录下面多一个 button 的目录,它既是一个页面也是一个 模块. 4.如果我们想在 ...

  10. Android简单实现滚动悬停效果

    import android.content.Context; import android.support.design.widget.TabLayout; import android.suppo ...