Überwatch

题目描述

The lectures are over, the assignments complete and even those pesky teaching assistants have nothing left to criticize about your coding project. Time to play some video games! As always, your procrastinating self has perfect timing: Cold Weather Entertainment just released Überwatch, a competitive first person video game!
Sadly, you aren’t very good at these kind of games. However, Überwatch offers more than just skill based gameplay. In Überwatch you can defeat all opponents in view with a single button press using your ultimate attack. The drawback of this attack is that it has to charge over time before it is ready to use. When it is fully charged you can use it at any time of your choosing.
After its use it immediately begins to charge again.
With this knowledge you quickly decide on a strategy:
• Hide from your opponents and wait for your ultimate attack to charge.
• Wait for the right moment.
• Defeat all opponents in view with your ultimate attack.
• Repeat.
After the game your teammates congratulate you on your substantial contribution. But you wonder: How many opponents could you have defeated with optimal timing?
The game is observed over n time slices. The ultimate attack is initially not charged and requires m time slices to charge. This first possible use of the ultimate attack is therefore in the (m+1)-th time slice. If the ultimate attack is used in the i-th time slice, it immediately begins charging again and is ready to be fired in the (i + m)-th time slice.

输入

The input consists of:
• one line with two integers n and m, where
– n (1 ≤ n ≤ 300 000) is the game duration;
– m (1 ≤ m ≤ 10) is the time needed to charge the ultimate attack in time slices.
• one line with n integers xi (0 ≤ xi ≤ 32) describing the number of opponents in view during a time slice in order.

输出

Output the maximum number of opponents you can defeat.

样例输入

4 2
1 1 1 1

样例输出

1

【题解】

题意说,有一个大招每次放完还需要等待m次,直接考虑dp[i],从开始到i这个时间内获取的最大值。

注意:第一个位置的时候为0,然后如果放完大招后下一次充能从1开始。【题目说得很清楚】

This first possible use of the ultimate attack is therefore in the (m+1)-th time slice.
If the ultimate attack is used in the i-th time slice, it immediately begins charging again and is ready to be fired in the (i + m)-th time slice.

然后直接转移即可。

 #include<bits/stdc++.h>
using namespace std;
const int N = 3e5+;
int dp[N],a[N],n,m;
int main()
{
scanf("%d%d",&n,&m);
//m++;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int res = ;
for(int i=;i<=n;i++){
dp[i] = dp[i-] ;
if( i>=(m+) ){
dp[i] = max( dp[i-m] + a[i] , dp[i] );
res = max( res , dp[i]) ;
}
}
printf("%d\n",res );
return ;
}

【动态规划】Überwatch的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. meshing-局部加密

    原视频下载地址: https://pan.baidu.com/s/1nvSf5qh 密码: cpbs

  2. The First Python man in Github

    Python date VS(可视化了一下前几名) 查了下Github上星星最多的Python man 或许这就是目标吧 刚刚改了github.

  3. 亚马逊AWS服务器CentOS/Linux系统Shell安装Nginx及配置自启动

    领了一个亚马逊的1年免费服务器,今天尝试安装 Nginx 服务器,使用原生的 Shell 方法. 为了方便以后查看,就把过程记录一下. 注意:亚马逊(AWS)服务器默认只能用 user-ec2 账户进 ...

  4. CSRF in asp.net mvc and ap.net core

    如果在方法上添加了[ValidateAntiForgeryToken],没处理好 请求没有带参数 2019-09-17 14:02:45,142 ERROR [36]: System.Web.Mvc. ...

  5. oneway modifier MQ 发送请求不接受任何响应

    Apache Thrift - Home http://thrift.apache.org/ /** * This method has a oneway modifier. That means t ...

  6. Cookie的使用(js-cookie插件)

    js-cookie 官方文档 里面就详细的介绍了es5怎么引用,以下是ES6以上的用户 一.安装 npm install js-cookie --save 二.引用 import Cookies fr ...

  7. Linux -- 信号编程

    进程捕捉到信号对其进行处理时,进程正在执行的正常序列就被信号处理程序临时中断,它首先执行该信号处理程序中的指令.如果从信号处理程序返回(例如没有调用exit或longjmp),则继续执行在捕捉到信号时 ...

  8. Linux -- 如何减少IO过程中的CPU copy

    四种I/O方式的对比 1. Buffered I/O read(file, tmp_buf, len); write(socket, tmp_buf, len); 上下文切换:4次 CPU copy: ...

  9. Mysql迁移由于字符集导致乱码的数据

    有时候会在不注意的情况下创建了字符集为latin1的数据库,导致后续插入的中文显示乱码.这时有两种方法:1.修改数据库与数据表的字符集(只能向上调整,不能向下调整):2.数据迁移.但是两种方法都需要做 ...

  10. Web登录验证之 Shiro

    1.需要用到的shiro相关包 <!-- shiro begin --> <dependency> <groupId>org.apache.shiro</gr ...