使用 joblib 对 Pandas 数据进行并行处理
使用 joblib 对 Pandas 数据进行并行处理
如果需要对一个很大的数据集进行操作,而基于一列数据生成新的一列数据可能都需要耗费很长时间。
于是可以使用 joblib 进行并行处理。
假设我们有一个 dataframe 变量 data,要基于它的 source 列生成新的一列 double,其实就是把原来的 source 列做了个平方运算。感觉就这个简单的运算,应该有更简单的方法,在这里只是举个例子,我们使用 apply 方法并行实现。
如果直接使用 apply 那么直接如下实现
import pandas as pd
def double_func(data):
return pow(data,2)
data["double"] = data["source"].apply(double_func)
使用并行实现如下
import pandas as pd
from joblib import Parallel, delayed
def double_func(data):
return pow(data,2)
def key_func(subset):
subset["double"] = subset["source"].apply(double_func)
data_grouped = data.groupby(data.index)
results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in data_grouped)
data = pd.concat(results)
基本原理就是把整个 dataframe 根据 index,每行生成了一个子数据集,而把每个子数据集作为子任务使用多进程运行,最终生成 results 是多进程运行生成的结果的 list,使用 concat 重新组合就是我们最终想要的结果了。
n_jobs 参数就是需要使用几个进程池来运行程序。貌似一般 CPU 是几核的用几个进程会比较好?
其实速度并不是成倍减少的,具体原因我也……不太好讲清,但是还是可以很大幅度提升运行速度的。
顺便一提,如果数据集很大,程序一跑起来,根本不知道它跑得怎么样了,还是说卡死了。
注意到,我们生成的 data_grouped 是一个可迭代的对象,那么就可以使用 tqdm 来可视化进度条。
如果在 jupyter 里面使用的话,代码可以是下面这样
import pandas as pd
from joblib import Parallel, delayed
from tqdm import tqdm, tqdm_notebook
tqdm_notebook().pandas()
def double_func(data):
return pow(data,2)
def key_func(subset):
subset["double"] = subset["source"].apply(double_func)
data_grouped = data.groupby(data.index)
results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
data = pd.concat(results)
友情提示,在我自己使用的时候遇到 bug ,提示无法从 Pandas 导入 PanelGroupby 的错误。查了许久才发现,是新版 Pandas 删除了PanelGroupby 这个模块。解决办法其实就是……升级 tqdm,在最新版已经修复了这个 bug 了。
使用 joblib 对 Pandas 数据进行并行处理的更多相关文章
- 数据分析与展示——Pandas数据特征分析
Pandas数据特征分析 数据的排序 将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序).分布/累计统计.数据特征(相关性.周期性等).数据挖掘(形成知识). .sort ...
- pandas小记:pandas数据输入输出
http://blog.csdn.net/pipisorry/article/details/52208727 数据输入输出 数据pickling pandas数据pickling比保存和读取csv文 ...
- Pandas数据排序
Pandas数据排序 .sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序 b = pd.DataFrame(np.arange(20).reshape(4,5),inde ...
- pandas数据操作
pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np. ...
- Pandas数据存取
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Pandas数据存取 Pandas可以存取多种介质类型数据, ...
- pandas 数据预处理
pandas 数据预处理 缺失数据处理 csv_data=''' A,B,C,D 1.0,2.0,3.0,4.0 5.6,6.0,,8.0 0.0,11.0,12.0,,''' import pand ...
- Pandas数据规整
Pandas数据规整 数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求 Pandas提供了一组高级的.灵活的.高效的核心函数和算法,它 ...
- GPU体系架构(一):数据的并行处理
最近在了解GPU架构这方面的内容,由于资料零零散散,所以准备写两篇博客整理一下.GPU的架构复杂无比,这两篇文章也是从宏观的层面去一窥GPU的工作原理罢了 GPU根据厂商的不同,显卡型号的不同,GPU ...
- Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series ...
随机推荐
- phpstorm激活码
激活码1 812LFWMRSH-eyJsaWNlbnNlSWQiOiI4MTJMRldNUlNIIiwibGljZW5zZWVOYW1lIjoi5q2j54mIIOaOiOadgyIsImFzc2ln ...
- Java程序向MySql数据库中插入的中文数据变成了问号
找到mysql的安装目录,修改my.ini文件 (1)如何找到my.ini文件 如果my.ini文件不在MySQL的安装目录下,可能放在隐藏目录,要先去找到ProgramData,(这里要先打开显示隐 ...
- Lambda方法推导(method references)
在上一篇[http://www.cnblogs.com/webor2006/p/7707281.html]中提到了方法推导的东东: 这里说细的学习一下它,下面走起! Method references ...
- SQL Server中四类事务并发问题的实例再现(转)
本篇文章将用实例再现数据库访问中四类并发问题,希望能让初学者能对事务的并行性有进一步的理解. 首先,让我们先来了解一下并行问题以及事务隔离级别这两个概念.在数据库中,假设如果没有锁定且多个用户同时访问 ...
- Oracle之:Function :dateToNumber()
create or replace function dateToNumber(i_date in date) return number is result number ; begin resul ...
- include和require的区别(PHP版本7)
亲自测试了一下,发现include有条件包含require无条件包含这个区别在PHP7版本中(据说PHP5以后)是不存在的了,也就是在if(false){ } 中都不会执行:还有一个返回值的问题,测试 ...
- python中reversed()函数的用法
reversed(a) # 返回一个反转的迭代器 举例 a = [1, 2, 3, 4, 5] b = reversed(a) # b是一个迭代器 # print(list(b)) = [5, 4, ...
- Konrad and Company Evaluation
F. Konrad and Company Evaluation 参考:[codeforces 1230F]Konrad and Company Evaluation-暴力 思路:题意分析见参考博客. ...
- Linux-expect脚本-编写一个expect脚本
1.声明expect #!/usr/bin/expect -f 2.设置超时时间,获取参数 set ip [lindex $argv 0 ] //接收第一个参数,并设置IP set password ...
- python中的定时器threading.Timer
由浅入深学SQL Server 2012 --> python开发中用到,定时操作.例如每隔1s执行一次,发现 threading.Timer,这个东西,可以直接用. 其原理为执行函数中置定时 ...