【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症
这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j
列出矩阵转移
这样会算重两个边相邻的,只要算出斐波那契数然后乘上N就是不合法的方案
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
const int MOD = 1000000007;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int getid(int x,int y) {
return y * 4 + x;
}
template<int T>
struct Matrix {
int f[T][T];
Matrix(){memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 0 ; i < T ; ++i) {
for(int j = 0 ; j < T; ++j) {
for(int k = 0 ; k < T ; ++k) {
update(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
friend Matrix fpow(Matrix a,int c) {
Matrix t = a,res;
for(int i = 0 ; i < T ; ++i) res.f[i][i] = 1;
while(c) {
if(c & 1) res = res * t;
t = t * t;
c >>= 1;
}
return res;
}
};
Matrix<12> a,ansa;
Matrix<2> b,ansb;
void Init() {
for(int j = 0 ; j <= 2 ; ++j) {
update(a.f[getid(0,j)][getid(0,j)],1);
update(a.f[getid(3,j)][getid(0,j)],1);
update(a.f[getid(0,j)][getid(3,j)],1);
}
update(a.f[getid(0,0)][getid(0,2)],1);
for(int j = 0 ; j < 2 ; ++j) {
update(a.f[getid(0,j)][getid(1,j + 1)],1);
update(a.f[getid(0,j)][getid(2,j + 1)],1);
update(a.f[getid(2,j)][getid(0,j + 1)],1);
update(a.f[getid(1,j)][getid(0,j + 1)],1);
}
for(int j = 0 ; j <= 2 ; ++j) {
update(a.f[getid(2,j)][getid(1,j)],1);
update(a.f[getid(1,j)][getid(2,j)],1);
}
update(b.f[0][0],1);update(b.f[0][1],1);
update(b.f[1][0],1);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
int T,N;read(T);
for(int i = 1 ; i <= T ; ++i) {
read(N);
ansa = fpow(a,N);ansb = fpow(b,N);
out(inc(ansa.f[getid(0,0)][getid(0,2)],MOD - mul(N,ansb.f[0][0])));enter;
}
}
【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症的更多相关文章
- LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)
题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...
- 「GXOI / GZOI2019」逼死强迫症——斐波那契+矩阵快速幂
题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \t ...
- Loj #3085. 「GXOI / GZOI2019」特技飞行
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)
题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...
- LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)
题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...
- LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)
题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...
- LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)
题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...
- LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)
题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...
随机推荐
- 年视图,选择月份 ---bootstrap datepicker
$.fn.datepicker.dates['cn'] = { //切换为中文显示 days: ["周日", "周一", "周二", &qu ...
- 浅谈Shiro框架中的加密算法,以及校验
在涉及到密码存储问题上,应该加密/生成密码摘要存储,而不是存储明文密码.为什么要加密:网络安全问题是一个很大的隐患,用户数据泄露事件层出不穷,比如12306账号泄露. Shiro提供了base64和1 ...
- javascript中的类型转换,宽松相等于严格相等
为了将值转换为基本类型值(string,number,boolean,null,undefined),抽象操作ToPrimitive会首先检查该值有没有valueOf()方法,如果有并且返回基本类型值 ...
- Leetcode题目49.字母异位词分组(中等)
题目描述: 给定一个字符串数组,将字母异位词组合在一起.字母异位词指字母相同,但排列不同的字符串. 示例: 输入: ["eat", "tea", "t ...
- Netfilter 之 iptable_nat
初始化 iptable_nat_table_init函数通过调用ipt_register_table完成NAT表注册和钩子函数注册的功能:该流程与iptable_filter的函数调用的函数一致,此处 ...
- Q窗口操作函数(窗口最大化,全屏,隐藏最大化最小化按钮)
//Qt主窗口没有最小化,最大化按钮且最大化显示 int main(int argc, char *argv[]) { QApplication a(argc, argv); TestQtForWi ...
- [Java复习] 多线程&并发 知识点补充
0. wait/notify/notifyAll的理解? wait:让持有该对象锁的线程等待: notify: 唤醒任何一个持有该对象锁的线程: notifyAll: 唤醒所有持有该对象锁的线程: 它 ...
- C# 程序的关闭 讲究解释
程序的关闭是很讲究的,处理的不好的话,将软件连续开启和关闭,当数次后在启动软件后程序会崩溃.或者程序退出很慢.细节决定成败,一款好的软件应该从各方面都要做严格地反复地推敲,力争做到无可挑剔. 有 ...
- 小D课堂-SpringBoot 2.x微信支付在线教育网站项目实战_3-1.整合Mybatis访问数据库和阿里巴巴数据源
笔记 1.整合Mybatis访问数据库和阿里巴巴数据源 简介:整合mysql 加入mybatis依赖,和加入alibaba druid数据源 1.加入依赖(可以用 http://start.s ...
- 小D课堂 - 新版本微服务springcloud+Docker教程_3-05 服务注册和发现Eureka Server搭建实战
笔记 5.服务注册和发现Eureka Server搭建实战 简介:使用IDEA搭建Eureka服务中心Server端并启动,项目基本骨架介绍 官方文档:http://clou ...