LOJ#3086. 「GXOI / GZOI2019」逼死强迫症

这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j

列出矩阵转移

这样会算重两个边相邻的,只要算出斐波那契数然后乘上N就是不合法的方案

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
const int MOD = 1000000007;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int getid(int x,int y) {
return y * 4 + x;
}
template<int T>
struct Matrix {
int f[T][T];
Matrix(){memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 0 ; i < T ; ++i) {
for(int j = 0 ; j < T; ++j) {
for(int k = 0 ; k < T ; ++k) {
update(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
friend Matrix fpow(Matrix a,int c) {
Matrix t = a,res;
for(int i = 0 ; i < T ; ++i) res.f[i][i] = 1;
while(c) {
if(c & 1) res = res * t;
t = t * t;
c >>= 1;
}
return res;
}
}; Matrix<12> a,ansa;
Matrix<2> b,ansb;
void Init() {
for(int j = 0 ; j <= 2 ; ++j) {
update(a.f[getid(0,j)][getid(0,j)],1);
update(a.f[getid(3,j)][getid(0,j)],1);
update(a.f[getid(0,j)][getid(3,j)],1);
}
update(a.f[getid(0,0)][getid(0,2)],1);
for(int j = 0 ; j < 2 ; ++j) {
update(a.f[getid(0,j)][getid(1,j + 1)],1);
update(a.f[getid(0,j)][getid(2,j + 1)],1);
update(a.f[getid(2,j)][getid(0,j + 1)],1);
update(a.f[getid(1,j)][getid(0,j + 1)],1);
}
for(int j = 0 ; j <= 2 ; ++j) {
update(a.f[getid(2,j)][getid(1,j)],1);
update(a.f[getid(1,j)][getid(2,j)],1);
}
update(b.f[0][0],1);update(b.f[0][1],1);
update(b.f[1][0],1);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
int T,N;read(T);
for(int i = 1 ; i <= T ; ++i) {
read(N);
ansa = fpow(a,N);ansb = fpow(b,N);
out(inc(ansa.f[getid(0,0)][getid(0,2)],MOD - mul(N,ansb.f[0][0])));enter;
}
}

【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症的更多相关文章

  1. LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)

    题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...

  2. 「GXOI / GZOI2019」逼死强迫症——斐波那契+矩阵快速幂

    题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \t ...

  3. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  4. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  5. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  6. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  7. LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)

    题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...

  8. LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)

    题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...

  9. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

随机推荐

  1. GC 老年代 新生代

    参考资料: http://blog.csdn.net/flamezyg/article/details/44673951 http://www.blogjava.net/ldwblog/archive ...

  2. redis,memcached,mongodb之间的区别

    Redis Redis的优点: 支持多种数据结构,如 string(字符串). list(双向链表).dict(hash表).set(集合).zset(排序set).hyperloglog(基数估算) ...

  3. 8.7 JSON存储数据方式(JavaScript对象表示法)

    8.7 JSON存储数据方式(JavaScript对象表示法) JSON JavaScript 对象表示法(JavaScript Object Notation) 是一种存储数据的方式. 一.创建JS ...

  4. 【redis 学习系列】API的理解与使用(四)

    5.集合 集合(set)类型也是用来保存多个字符串元素,但是与列表不一样的是,集合中不允许有重复的元素,并且集合中的元素是无序的,不能通过索引下标获取元素. 如图2-22所示,集合user:1:fol ...

  5. GIT上面有的分支,本地却无法检出,也看不到该分支

    正常情况在gitlib上面可以看到代码里面有develop的分支 然而本地在查看所有分支的时候却报错 #查看所有的分支 git branch -a 这种情况是没有更新远程分支的索引,所以这样是看不到的 ...

  6. php中pack、unpack的详细用法

    详见: https://segmentfault.com/a/1190000008305573?utm_source=tag-newest

  7. 更新ubuntu的对应源配置文件

    UBUNTU中安装依赖包,出现如下错误:E: Failed to fetch http://security.ubuntu.com/ubuntu/pool/universe/o/openjdk-8/o ...

  8. git 撤消修改

    第一步: 执行git reflog获取你自己的commit id(这里就是A1).当然你可以在eclipse的git插件中通过查看历史得到 第二步: 执行git reset –hard A1(这里的A ...

  9. [java] 将整数在千分位或万分位以逗号分隔表示

    简单使用DecimalFormat的功能就能做到了,代码如下: package com.testEmp; import java.text.DecimalFormat; public class Nu ...

  10. Mac配置jdk以及maven

    一 Mac配置JDK和Maven 1.安装成功jdk后 2.打开终端后,输入vim ~/.bash_profile 3.输入: export MAVEN_HOME=/usr/local/maven/a ...