题意

给出\(n\),\(m\),\(mu\),问有多少个序列组\((A_0,A_1,\dots,A_n)\)满足:

  • 序列\(Ai\)的长度恰好为\(i\)
  • 所有元素均在\([1,m]\)
  • \(A_{i−1}\)是\(A_i\)的子序列
  • \(A_i\)的字典序大于\(A_{i−1}\)

答案模\(mu\)输出。

\(n,k \le 300\)

传送门

思路

又是一道神仙\(dp\)

一个很重要的思路:把数从小往大插入

当我们插入\(i\)时,因为数列中的数都是\(\le i\)的,所以\(i\)插在所有位置都是可以的

例如:\(1323\),考虑插入\(3\)

最前面:\(31323\);一:\(13323\);二:\(13323\);三:\(13233\);四:\(13233\)

不过同时我们也发现:会算重。而且是当插到\(i\)前面的时候

所以我们强行规定相同数一定要插在后面就可以了。

我们记录\(dp[i][j][k]\)表示当前进行到第\(i\)个操作,放到数字\(j\),有\(k\)个数后可以放(注意这意味着有\(k+1\)种,因为开头也是可以放的)。

转移:

  • \(dp[i][j][k - 1]+= dp[i][j][k] (k>0)\)表示这个位置的数后不放
  • \(dp[i][j + 1][i] += dp[i][j][k] (k=0)\)\(j\)已经不能放了,从\(j+1\)新开始放(不存在相同的,所以所有数后都能放)
  • \(dp[i + 1][j][k] += dp[i][j][k]*(k + 1)\) 表示我们放置这个数,放这个数有\(k+1\)中选择。

代码十分简短

参考

#include <bits/stdc++.h>
#define upd(x,y) x=(x+y>=mu?x+y-mu:x+y)
int n,m,mu,dp[305][305][305];
int main(){
scanf("%d%d%d",&n,&m,&mu);
dp[0][1][0]=1;
for (int i=0;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=i;k>=0;k--){
if (k) upd(dp[i][j][k-1],dp[i][j][k]);
else upd(dp[i][j+1][i],dp[i][j][k]);
upd(dp[i+1][j][k],1ll*dp[i][j][k]*(k+1)%mu);
}
printf("%d",dp[n][m][0]);
}

AGC024E Sequence Growing Hard的更多相关文章

  1. AtCoder - 3962 Sequence Growing Hard

    Problem Statement Find the number of the possible tuples of sequences (A0,A1,…,AN) that satisfy all ...

  2. [AtCoder Grand Contest 024 Problem E]Sequence Growing Hard

    题目大意:考虑 N +1 个数组 {A0,A1,…,AN}.其中 Ai 的长度是 i,Ai 内的所有数字都在 1 到 K 之间. Ai−1 是 Ai 的子序列,即 Ai 删一个数字可以得到 Ai−1. ...

  3. AGC024C Sequence Growing Easy

    题目大意 你开始有一个序列x 它所有项都是0 你有一个操作:x[i]=x[i-1]+1 问你至少几次操作可以让x序列变为给定的a序列 分析 老年人完全不会这种脑子题/kk........ 我们定义b[ ...

  4. Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)

    题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...

  5. 【AtCoder】AGC024

    A - Fairness 如果奇数次是b - a 否则是a - b #include <bits/stdc++.h> #define fi first #define se second ...

  6. 【SPOJ】MGLAR10 - Growing Strings

    Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is us ...

  7. 【规律】Growing Rectangular Spiral

    Growing Rectangular Spiral 题目描述 A growing rectangular spiral is a connected sequence of straightline ...

  8. oracle SEQUENCE 创建, 修改,删除

    oracle创建序列化: CREATE SEQUENCE seq_itv_collection            INCREMENT BY 1  -- 每次加几个              STA ...

  9. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

随机推荐

  1. 关于微信小程序获取多个formId的实现方法

    在此之前,很多人使用过form和button的多层嵌套来实现点击一次获取多个formId的目的,如下图所示,点击一次“提交”,可以获取到多个formId 但是在今年3月份,这个投机取巧的方法(算是微信 ...

  2. selenium小结

    1.selenium基本使用 https://www.cnblogs.com/andy9468/p/8976930.html 2.url发生跳转的处理 https://www.cnblogs.com/ ...

  3. github安全整理

    漏洞及渗透练习平台: WebGoat漏洞练习平台: https://github.com/WebGoat/WebGoat webgoat-legacy漏洞练习平台: https://github.co ...

  4. python之闲聊数据类型及常用操作符

    Day 1-afternoon 所谓闲聊,也称gossip.下面开始... 整型 python3 的整型与长整型进行了无缝结合,长度不受限制. 浮点型 包括科学计数法 E.(用法同C) 布尔类型 即特 ...

  5. 安装mysql 好不容易成功了 却连不上

    [mysqld] skip-grant-tables datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock # Disabling symbo ...

  6. Java数组复制、遍历、反转

    /* 1.数组长度,直接length 即可! 2.min()/max(),需要调用库! 3.数组的复制 ,遍历复制,或者直接命名相等 即可! 4.数组反转时,直接折中即可!对调两重循环麻烦! */ i ...

  7. Linux系统进程的知识总结,进程与线程之间的纠葛...

    来源:嵌入式ARM 当一个程序开始执行后,在开始执行到执行完毕退出这段时间内,它在内存中的部分就叫称作一个进程. Linux 是一个多任务的操作系统,也就是说,在同一时间内,可以有多个进程同时执行.我 ...

  8. Selenium(四)使用xpath定位元素

    1.什么是xpath: 2.xpath的节点类型 3.xpath的表达式 4.开始定位 浏览器打开本地文件:   (python3.7的打开语法) 查找根节点: (绝对路径)查找子节点: 查找type ...

  9. EL表达式,JSP内置对象

    基本语法格式 EL都是以 ${ 为起始.以} 为结尾的 ${ EL Expression} 示例: ${ “Helloworld” }  //输出字符串常量 ${ str }  //输出字符串变量st ...

  10. flask读书笔记-flask web开发

    在应用启动过程中, Flask 会创建一个 Python 的 logging.Logger 类实例,并将其附属到应用实例上,通过 app.logger 访问 ===================== ...