AGC024E Sequence Growing Hard
题意
给出\(n\),\(m\),\(mu\),问有多少个序列组\((A_0,A_1,\dots,A_n)\)满足:
- 序列\(Ai\)的长度恰好为\(i\)
- 所有元素均在\([1,m]\)
- \(A_{i−1}\)是\(A_i\)的子序列
- \(A_i\)的字典序大于\(A_{i−1}\)
答案模\(mu\)输出。
\(n,k \le 300\)
传送门
思路
又是一道神仙\(dp\)
一个很重要的思路:把数从小往大插入
当我们插入\(i\)时,因为数列中的数都是\(\le i\)的,所以\(i\)插在所有位置都是可以的
例如:\(1323\),考虑插入\(3\)
最前面:\(31323\);一:\(13323\);二:\(13323\);三:\(13233\);四:\(13233\)
不过同时我们也发现:会算重。而且是当插到\(i\)前面的时候
所以我们强行规定相同数一定要插在后面就可以了。
我们记录\(dp[i][j][k]\)表示当前进行到第\(i\)个操作,放到数字\(j\),有\(k\)个数后可以放(注意这意味着有\(k+1\)种,因为开头也是可以放的)。
转移:
- \(dp[i][j][k - 1]+= dp[i][j][k] (k>0)\)表示这个位置的数后不放
- \(dp[i][j + 1][i] += dp[i][j][k] (k=0)\)\(j\)已经不能放了,从\(j+1\)新开始放(不存在相同的,所以所有数后都能放)
- \(dp[i + 1][j][k] += dp[i][j][k]*(k + 1)\) 表示我们放置这个数,放这个数有\(k+1\)中选择。
代码十分简短
参考
#include <bits/stdc++.h>
#define upd(x,y) x=(x+y>=mu?x+y-mu:x+y)
int n,m,mu,dp[305][305][305];
int main(){
scanf("%d%d%d",&n,&m,&mu);
dp[0][1][0]=1;
for (int i=0;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=i;k>=0;k--){
if (k) upd(dp[i][j][k-1],dp[i][j][k]);
else upd(dp[i][j+1][i],dp[i][j][k]);
upd(dp[i+1][j][k],1ll*dp[i][j][k]*(k+1)%mu);
}
printf("%d",dp[n][m][0]);
}
AGC024E Sequence Growing Hard的更多相关文章
- AtCoder - 3962 Sequence Growing Hard
Problem Statement Find the number of the possible tuples of sequences (A0,A1,…,AN) that satisfy all ...
- [AtCoder Grand Contest 024 Problem E]Sequence Growing Hard
题目大意:考虑 N +1 个数组 {A0,A1,…,AN}.其中 Ai 的长度是 i,Ai 内的所有数字都在 1 到 K 之间. Ai−1 是 Ai 的子序列,即 Ai 删一个数字可以得到 Ai−1. ...
- AGC024C Sequence Growing Easy
题目大意 你开始有一个序列x 它所有项都是0 你有一个操作:x[i]=x[i-1]+1 问你至少几次操作可以让x序列变为给定的a序列 分析 老年人完全不会这种脑子题/kk........ 我们定义b[ ...
- Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)
题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...
- 【AtCoder】AGC024
A - Fairness 如果奇数次是b - a 否则是a - b #include <bits/stdc++.h> #define fi first #define se second ...
- 【SPOJ】MGLAR10 - Growing Strings
Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is us ...
- 【规律】Growing Rectangular Spiral
Growing Rectangular Spiral 题目描述 A growing rectangular spiral is a connected sequence of straightline ...
- oracle SEQUENCE 创建, 修改,删除
oracle创建序列化: CREATE SEQUENCE seq_itv_collection INCREMENT BY 1 -- 每次加几个 STA ...
- Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等
功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...
随机推荐
- elementui禁用树形结构全部复选框
需求:编辑回显数据后,禁用树形结构复选框,不可选中,无复选框也不可选中 <el-tabs v-model="activeName" @tab-click="hand ...
- ElementUi使用表单验证出现验证问题
问题: 使用vue element-ui中的form表单验证出现了输入框或者下拉框中明明有值, 但是却还是提示请输入或请选择,错误如下: <el-form status-icon :ref=&q ...
- 基于微软hyper-v虚拟化服务器搭建方法和步骤整理
基于Microsoft基础设施私有云计算搭建 摘要:私有云是指组织机构建设的专供自己使用的云平台,它所提供的服务不是供他人使用,而是供自己的内部人员或分支机构使用,不同于公有云,私有云部署在企业内部网 ...
- java玩转zip压缩包
首先将相关jar包引入pom.xml中 <!-- 解压zip --> <dependency> <groupId>org.apache.ant</groupI ...
- 解决sqoop抽数报错:IO Error: Connection reset
遇到的问题:进行sqoop抽数时,虽然能成功执行,但是过程中有很多这样的信息 19/11/20 15:17:11 INFO mapreduce.Job: Task Id : attempt_15737 ...
- mongodb的基本操作之数据删除
删除操作使用remove进行,数据的删除与查询类似,接受一个参数,与查询不同的是,为了防止误操作,删除操作不允许不传参数 比如 db.test_collection.remove() 会报错 Erro ...
- ZZNUOJ-2155-单身man集合-【标程做法:数位DP-1-10^8,提前暴力打表法: 砍时间复杂度到10^5】
ZZNUOJ-2155: 单身MAN集合 题目描述: 单身man们突然集结起来了,虽然我们不知道它们想要干什么.你作为单身man的首领需要管理好每一只单身man,机智的你给每一只单身man编了一个编号 ...
- go语言的defer语句
转: https://www.jianshu.com/p/5b0b36f398a2 ---------------------------------------------------------- ...
- string::clear
void clear() noexcept;功能:把string对象置为空 #include <iostream>#include <string> using namespa ...
- CentOS7主机SSH连接失败
说来话长,之前20刀一年买bandwagon的廉价VPS,由于做了一些违法的事情,导致ip被封了. 检测ip被封的方法:进入ping.chinaz.com:输入IP地址,如果国外节点能够Ping通而国 ...