题意

给出\(n\),\(m\),\(mu\),问有多少个序列组\((A_0,A_1,\dots,A_n)\)满足:

  • 序列\(Ai\)的长度恰好为\(i\)
  • 所有元素均在\([1,m]\)
  • \(A_{i−1}\)是\(A_i\)的子序列
  • \(A_i\)的字典序大于\(A_{i−1}\)

答案模\(mu\)输出。

\(n,k \le 300\)

传送门

思路

又是一道神仙\(dp\)

一个很重要的思路:把数从小往大插入

当我们插入\(i\)时,因为数列中的数都是\(\le i\)的,所以\(i\)插在所有位置都是可以的

例如:\(1323\),考虑插入\(3\)

最前面:\(31323\);一:\(13323\);二:\(13323\);三:\(13233\);四:\(13233\)

不过同时我们也发现:会算重。而且是当插到\(i\)前面的时候

所以我们强行规定相同数一定要插在后面就可以了。

我们记录\(dp[i][j][k]\)表示当前进行到第\(i\)个操作,放到数字\(j\),有\(k\)个数后可以放(注意这意味着有\(k+1\)种,因为开头也是可以放的)。

转移:

  • \(dp[i][j][k - 1]+= dp[i][j][k] (k>0)\)表示这个位置的数后不放
  • \(dp[i][j + 1][i] += dp[i][j][k] (k=0)\)\(j\)已经不能放了,从\(j+1\)新开始放(不存在相同的,所以所有数后都能放)
  • \(dp[i + 1][j][k] += dp[i][j][k]*(k + 1)\) 表示我们放置这个数,放这个数有\(k+1\)中选择。

代码十分简短

参考

#include <bits/stdc++.h>
#define upd(x,y) x=(x+y>=mu?x+y-mu:x+y)
int n,m,mu,dp[305][305][305];
int main(){
scanf("%d%d%d",&n,&m,&mu);
dp[0][1][0]=1;
for (int i=0;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=i;k>=0;k--){
if (k) upd(dp[i][j][k-1],dp[i][j][k]);
else upd(dp[i][j+1][i],dp[i][j][k]);
upd(dp[i+1][j][k],1ll*dp[i][j][k]*(k+1)%mu);
}
printf("%d",dp[n][m][0]);
}

AGC024E Sequence Growing Hard的更多相关文章

  1. AtCoder - 3962 Sequence Growing Hard

    Problem Statement Find the number of the possible tuples of sequences (A0,A1,…,AN) that satisfy all ...

  2. [AtCoder Grand Contest 024 Problem E]Sequence Growing Hard

    题目大意:考虑 N +1 个数组 {A0,A1,…,AN}.其中 Ai 的长度是 i,Ai 内的所有数字都在 1 到 K 之间. Ai−1 是 Ai 的子序列,即 Ai 删一个数字可以得到 Ai−1. ...

  3. AGC024C Sequence Growing Easy

    题目大意 你开始有一个序列x 它所有项都是0 你有一个操作:x[i]=x[i-1]+1 问你至少几次操作可以让x序列变为给定的a序列 分析 老年人完全不会这种脑子题/kk........ 我们定义b[ ...

  4. Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)

    题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...

  5. 【AtCoder】AGC024

    A - Fairness 如果奇数次是b - a 否则是a - b #include <bits/stdc++.h> #define fi first #define se second ...

  6. 【SPOJ】MGLAR10 - Growing Strings

    Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is us ...

  7. 【规律】Growing Rectangular Spiral

    Growing Rectangular Spiral 题目描述 A growing rectangular spiral is a connected sequence of straightline ...

  8. oracle SEQUENCE 创建, 修改,删除

    oracle创建序列化: CREATE SEQUENCE seq_itv_collection            INCREMENT BY 1  -- 每次加几个              STA ...

  9. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

随机推荐

  1. c#学习笔记-深度复制 与浅度复制

    关于值类型和引用类型: 浅度复制(shallow copy)只复制值类型(char,int )的值,而对于引用类型不会复制,浅度复制可以通过派生于System.Object的MemberwiseClo ...

  2. 九、小程序 Redux详解与在小程序中怎么使用(action和reducers)

    什么是Redux ​ Redux我们可以把它理解成一个状态管理器,可以把状态(数据)存在Redux中,以便增.删.改.例如: 从服务器上取一个收藏列表,就可以把取回来的列表数据用Redux管理,多个页 ...

  3. ASP.NET WEB应用程序(.network4.5)MVC Razor视图引擎2 视图模板页

    https://www.cnblogs.com/xlhblogs/archive/2013/06/09/3129449.html MVC Razor模板引擎 @RenderBody.@RenderPa ...

  4. Django admin 外键关联默认显示用户的username

    使用默认User表.默认显示用户username,转换成get_full_name() /home/labsmith/venv_labsmit/lib/python3.6/site-packages/ ...

  5. JavaScript指定日期格式化

    formatDataToString:function (dates, formats) { var o = { "M+": dates.getMonth() + 1, //月份 ...

  6. 常用的bug管理工具

    1. QC(Quality Center)是原Mercury Interactive公司(现已被HP收购)生产的企业级基于WEB測试管理工具,须要安装配置IIS和数据库.系统资源消耗比較 大:功能非常 ...

  7. arduino安装出现驱动程序不适用于该平台

    之前重新安装了系统,然后重新安装arduino驱动的时候出现了之前没遇到过的问题,这里记录一下. 现在装的是win7 64位的系统,先去官方下载(官方下载慢的,可以去相关论坛下载),有安装版和解压版的 ...

  8. Map集合中get不存在的key值

    返回的值是null 测试代码 import java.util.HashMap; import java.util.Map; public class Test { public static voi ...

  9. zencart用sql语句设置默认语言

    有时候拷贝站的时候,由于语言文件的缺失,导致页面空白,需要将默认语言更改为英语,以下sql语句可以一定搞定: UPDATE `configuration` SET `configuration_val ...

  10. 理解 shared_ptr实现copy-on-write(COW)

    看muduo库某个生产者消费者的地方,利用shared_ptr有效减少了锁的范围及无用的拷贝,下面来看一看 // reader 消费者, shared_ptr<map<string,int ...