Python3多重继承排序原理(C3算法)
参考:https://www.jianshu.com/p/c9a0b055947b
类C的线性化记忆为L[C]=[C1,C2,...Cn],其中C1称为L[C]的头,其余元素[C2,...Cn]称为尾。如果一个类C继承自基类B1,B2,...,B那么L[C]的计算过程为
#类object为最高父类,所有类都继承object
L[objicet]=[object]
L[C(B1,B2,...Bn)]=[C]+merge(L[B1],L[B2],[B1,B2,...Bn])
merge是将一组列表输出为一个列表,其过程为
1,检查第一个列表的头元素,记做H
2,如果H是后续序列的第一个元素,或者不在后续序列中再次出现,则将其输出,并将其从所有列表中删除,如果不符合跳过此元素,查找下一个列表的第一个元素,然后回到步骤1
3,重复上述步骤,直至列表为空或者不能再找出可以输出的元素。
举例说明
>>> class A(object):
... pass
...
>>> class B(object):
... pass
...
>>> class C(A,B):
... pass
首先object,A,B的线性化结果比较简单
L[object]=[object]
L[A]=[A,object]
L[B]=[B,object]
python内置变量__mro__存储了
>>> object.__mro__
(<class 'object'>,)
>>> A.__mro__
(<class '__main__.A'>, <class 'object'>)
>>> B.__mro__
(<class '__main__.B'>, <class 'object'>)
需要计算出L[C]
L[C]=[C]+merge(L[A],L[B],[A,B])
=[C]+mergr([A,object],[B,object],[A,B])
#取得的第一个元素是A,是序列[A,B]的第一个元素所以输出A并且将A从所有列表中删除
=[C,A]+merge([object],[B,object],[B])
#取得的元素为object不满足条件,object是序列[B,object]的最后一个元素,跳过取到元素为B,满足条件,将B输出并从所有列表删除B
=[C,A,B]+merge([object],[object])
#最后的结果
=[C,A,B,object]
使用__mro__验证计算结果正确
>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>)
一个复杂的例子
class B(object): pass class C(object): pass class D(A,C): pass class E(B,C): pass class F(D,E): pass
计算过程
L[F] = [F] + merge(L[D], L[E], [D, E])
= [F] + merge([D, A, C, object], [E, B, C, object], [D, E])
= [F, D] + merge([A, C, object], [E, B, C, object], [E])
= [F, D, A] + merge([C, object], [E, B, C, object], [E])
= [F, D, A, E] + merge([C, object], [B, C, object])
= [F, D, A, E, B] + merge([C, object], [C, object])
= [F, D, A, E, B, C, object]
验证计算结果
(<class '__main__.F'>, <class '__main__.D'>, <class '__main__.A'>, <class '__main__.E'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)
以上算法虽然可以计算出继承顺序,但是不直观 ,可以使用图示拓扑顺序进行推导
什么是拓扑顺序
在图论中,拓扑顺序(Topological Storting)是一个有向无环图(DAG,Directed Acyclic Graph)的所有定点的线性序列。且该序列必须满足一下两个条件
1,每个顶点出现且只出现一次
2,若存在一条从顶点A到顶点B的路径,那么在序列中顶点A出现在顶点B的前面
看下图

它是一个DAG图,那么如果写出它的拓扑顺序呢?一种比较常见的方法
1,从DAG途中选择一个没有前驱(即入度为0)的顶点并输出
2,从图中删除该顶点和所有以它为起点的有向边
3,重复1和2直到当前DAG图为空或者当前途中不存在无前驱的顶点为止。

于是得到拓扑排序后的结果为{1,2,4,3,5}
看实例
class A(object):
pass class B(object):
pass class C1(A,B):
pass class C2(A,B):
pass class D(C1,C2):
pass
根据上述继承关系构成一张图

1,找到入度为0的点,只有一个D,把D拿出来,把D相关的边减掉
2,现在有两个入度为0的点(C1,C2),取最左原则,拿C1,减掉C1相关的边,这时候的排序是{D,C1}
3, 现在入度为0的点(C2),拿掉C2,减掉C2相关的边,这时候的排序是{D,C1,C2}
4,现在入度为0的点(A,B),取最左原则,拿掉A,减掉A相关的边,这时候的排序是{D,C1,C2,A}
5,现在入度为0的点只有B,拿掉B,减掉B相关的边,最后只剩下object
所以最后的排序是{D,C1,C2,A,B,object}
验证一下结果
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.C1'>, <class '__main__.C2'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>)
为了进一步属性,在看一个例子
class A(object):
pass class B(object):
pass class C1(A):
pass class C2(B):
pass class D(C1,C2):
pass
继承图

1,找到入度为0的顶点,只有一个D,拿D,剪掉D相关的边
2,得到两个入度为0的顶点(C1,C2),根据最左原则,拿C1,剪掉C1相关的边,这时候序列为{D,C1}
3,接着看,入度为0的顶点有两个(A,C1),根据最左原则,拿A,剪掉A相关的边,这时候序列为{D,C1,A}
4,接着看,入度为0的顶点为C2,拿C2,剪掉C2相关的边,这时候序列为{D,C1,A,C2}
5,继续,入度为0的顶点为B,拿B,剪掉B相关的边,最后还有一个object
所以最后的序列为{D,C1,A,C2,B,object}
(<class '__main__.D'>, <class '__main__.C1'>, <class '__main__.A'>, <class '__main__.C2'>, <class '__main__.B'>, <class 'object'>)
使用图示拓扑法可以快速计算出继承顺序
Python3多重继承排序原理(C3算法)的更多相关文章
- Python多继承C3算法
Python3 多继承的MRO算法选择.MRO(Method Resolution Order):方法解析顺序. Python3 只保留了C3算法! C3算法解析: 1.C3算法解析 C3算法:MRO ...
- python多重继承C3算法
python多重继承的MRO算法选择: 经典方式.Python2.2 新式算法.Python2.3 新式算法(C3).Python 3中只保留了最后一种,即C3算法 C3算法的解析: 1.多继承UML ...
- python3的C3算法
一.基本概念 1. mro序列 MRO是一个有序列表L,在类被创建时就计算出来. 通用计算公式为: mro(Child(Base1,Base2)) = [ Child ] + merge( mro(B ...
- 转载 python多重继承C3算法
备注:O==object 2.python-C3算法解析: #C3 定义引用开始 C3 算法:MRO是一个有序列表L,在类被创建时就计算出来. L(Child(Base1,Base2)) = [ Ch ...
- 关于Python类的多继承中的__mro__属性使用的C3算法以及继承顺序解释
刚刚学到类的多继承这个环节,当子类继承多个父类时,调用的父类中的方法具体是哪一个我们无从得知,为此,在Python中有函数__mro__来表示方法解析顺序. 当前Python3.x的类多重继承算法用的 ...
- MySQL排序原理与案例分析
前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Group by语句,Distinct ...
- 【MySQL】排序原理与案例分析
前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Group by语句,Distinct语句都会隐 ...
- MySQL排序原理与MySQL5.6案例分析【转】
本文来自:http://www.cnblogs.com/cchust/p/5304594.html,其中对于自己觉得是重点的加了标记,方便自己查阅.更多详细的说明可以看沃趣科技的文章说明. 前言 ...
- [转]MySQL排序原理与案例分析
这篇文章非常好,就把他转过来 前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Grou ...
随机推荐
- AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)
题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...
- HR#7 题解
T1 签到题 #include<bits/stdc++.h> #define R register int using namespace std; inline int g() { R ...
- vue+大文件上传控件
总结一下大文件分片上传和断点续传的问题.因为文件过大(比如1G以上),必须要考虑上传过程网络中断的情况.http的网络请求中本身就已经具备了分片上传功能,当传输的文件比较大时,http协议自动会将文件 ...
- Educational Codeforces Round 55 题解
题解 CF1082A [Vasya and Book] 史上最难A题,没有之一 从题意可以看出,翻到目标页只有三种办法 先从\(x\)到\(1\),再从\(1\)到\(y\) 先从\(x\)到\(n\ ...
- TensorFlow(二):基本概念以及练习
一:基本概念 1.使用图(graphs)来表示计算任务 2.在被称之为会话(Session)的上下文(context)中执行图 3.使用tensor表示数据 4.通过变量(Variable)维护状态 ...
- python3 调用 beautifulSoup 进行简单的网页处理
python3 调用 beautifulSoup 进行简单的网页处理 from bs4 import BeautifulSoup file = open('index.html','r',encodi ...
- 前端武器库之DOM练习
1.模态对话框 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- 前端代码规范-CSS
CSS规范 一.命名规范BEM(Block Element Modifier) 1.Block name -- 实体名称中的单词之间用连字符分隔(-) HTML <div class=" ...
- Java基础系列 - 接口(功能,用途和优势)
package com.test1; /** * 接口的使用 */ public class test1 { public static void main(String[] args) { //创建 ...
- hadoop(1)---hadoop的介绍和几种模式。
一.什么是hadoop? Hadoop软件库是一个开源框架,允许使用简单的编程模型跨计算机集群分布式处理大型数据集.它旨在从单个服务器扩展到数千台计算机,每台计算机都提供本地计算和存储.库本身不是依靠 ...