嘟嘟嘟




TJ律师函警告




20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可。

需要注意的是,容斥的时候还要考虑每一组的位置可以不一样,因此要用插板法计算方案:\(C_{i + n - 4i} ^ {i}\)。




剩下虽然没给暴力分,但其实能水到68。

我们\(O(n ^ 3)\)枚举\(a, b, c\)人数(这样就能算出来\(d\)的人数),设分别为\(i, j, k, h\)。然后根据可重集的全排列公式,方案数就是\(\frac{n!}{i! * j! * k! * h!}\)。这时候再枚举组数容斥减去即可。加几个break就能搞到68分。

然后机房乱搞之神ssy在这个思路的基础上直接水到100分:把容斥放在最外层;发现有一部分可以与处理;记忆化。但这里我们就不细讲了。




正解是NTT啥的,但我虽然会,可是懒得写。这里讲一个更简单的方法。

考虑到上面的复杂度瓶颈在于\(O(n ^ 3)\)枚举人数。我们可以换一种思路:枚举\(a, b\)之和\(t\),这样总方案数就是\(\sum _ {t = 0} ^ {n} (\sum _ {i = 0} ^ {t} C_{t} ^ {i} * \sum _ {k = 0} ^ {n - t} C_{n - t} ^ {k}) C_{n} ^ {t}\)。

然后发现中间的两个\(\sum\)是底数(但愿能这么叫)相同的连续组合数之和,于是可以预处理。如果不考虑容斥,\(O(n)\)就能求出来。

然后我们在最外层套上容斥,和20分做法一样,枚举讨论cxk的有几组就行了。




代码参见了题解,虽然不是很提倡循环的时候改变全局变量的方法,但有时候这么写是真的简便。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e3 + 5;
const ll mod = 998244353;
In int read()
{
int ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen(".in", "r", stdin);
freopen(".out", "w", stdout);
#endif
} int n, a, b, c, d; In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;} ll C[maxn][maxn], sum[maxn][maxn];
In void init()
{
C[0][0] = 1;
for(int i = 1; i < maxn; ++i)
{
C[i][0] = 1;
for(int j = 1; j <= i; ++j) C[i][j] = inc(C[i - 1][j - 1], C[i - 1][j]);
}
sum[0][0] = 1;
for(int i = 0; i < maxn; ++i)
{
sum[i][0] = 1;
for(int j = 1; j < maxn; ++j) sum[i][j] = inc(sum[i][j - 1], C[i][j]);
}
} In ll calc(int t, int L, int R)
{
if(L > R) return 0;
if(L <= 0) return sum[t][R];
return inc(sum[t][R], mod - sum[t][L - 1]);
} int main()
{
//MYFILE();
n = read();
a = min(n, read()), b = min(n, read()), c = min(n, read()), d = min(n, read());
init();
ll ans = 0;
for(int t = 0; n >= 0 && a >= 0 && b >= 0 && c >= 0 && d >= 0; ++t)
{
ll tp = 0;
for(int i = 0; i <= n; ++i)
tp = inc(tp, C[n][i] * calc(i, i - b, i) % mod * calc(n - i, n - i - d, c) % mod);
tp = tp * C[n + t][t] % mod;
ans = inc(ans, (t & 1) ? mod - tp : tp);
n -= 4, --a, --b, --c, --d;
}
write(ans), enter;
return 0;
}

[TJOI2019]唱、跳、rap和篮球的更多相关文章

  1. [bzoj5510]唱跳rap和篮球

    显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...

  2. 将Android手机无线连接到Ubuntu实现唱跳Rap

    您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...

  3. [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt

    [TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...

  4. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  5. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

  6. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  7. [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

    算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...

  8. 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

    原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...

  9. Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】

    当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...

随机推荐

  1. Mobile Phone Network CodeForces - 1023F (最小生成树)

    大意: 无向图, 其中k条边是你的, 边权待定, m条边是你对手的, 边权已知. 求如何设置边权能使最小生成树中, 你的边全被选到, 且你的边的边权和最大. 若有多棵最小生成树优先取你的边. 先将$k ...

  2. (一)SpringBoot之简介和安装插件以及HelloWorld第一个程序

    一.简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的 ...

  3. MySQL存储的字段是不区分大小写的,你知道吗?

    做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 00 简单回顾 之前写过一篇关于mysql 对表大小写敏感的问题,其实在mysql中字段存储的内容是不区分大小写的,本篇进 ...

  4. .NET CORE 下 MariaDB DBfirst 生成model层 并配置连接参数

    1.首先新建一个类库,然后通过NuGet安装下面三个包 2.然后在程序包管理器控制台中运行以下代码(ps:记得默认项目选择刚才新建的项目,同时设置为启动项) server 是服务器地址 databas ...

  5. 基于微软hyper-v虚拟化服务器搭建方法和步骤整理

    基于Microsoft基础设施私有云计算搭建 摘要:私有云是指组织机构建设的专供自己使用的云平台,它所提供的服务不是供他人使用,而是供自己的内部人员或分支机构使用,不同于公有云,私有云部署在企业内部网 ...

  6. socket基本用法

    socket介绍 1.什么是socket socket是应用层与传输层中间的一个软件抽象层,它是一组接口.它把TCP/IP这些复杂的协议统一封装起来 这样我们只要知道如何使用socket就好,就已经符 ...

  7. openssh升级

    转载:(感谢作者) centos7 升级openssh到openssh-8.0p1版本 https://www.cnblogs.com/nmap/p/10779658.html centos 7 op ...

  8. 【Hibernate】Hibernate关联关系的映射

    一.实体之间的关系 二.一对多的配置 2.1 第一步创建两个实体 2.2 第二步:配置映射文件 2.3 第三步:将映射放到核心配置文件中 三.级联 3.1 Hibernate中级联保存的效果 3.2 ...

  9. 谁还不知道Java String的那点事

    String是我们平时接触最多的一种数据类型之一,不同语言有自己内部的实现,今日一起看下Java中String的内部实现. 常问问题 面试中常被提及的String问题 String为什么是Final的 ...

  10. C和指针--命令行参数

    1.命令行参数 C程序的main函数具有两个形参,第1个通常称为argc,它表示命令行参数的数目.第2个称为argv,它指向一组参数值.由于参数的数目并没有内在的限制,所以argv指向这组参数值(本质 ...